Skip to main content
Genetics logoLink to Genetics
. 2003 May;164(1):259–268. doi: 10.1093/genetics/164.1.259

Is the rate of insertion and deletion mutation male biased?: Molecular evolutionary analysis of avian and primate sex chromosome sequences.

Hannah Sundström 1, Matthew T Webster 1, Hans Ellegren 1
PMCID: PMC1462550  PMID: 12750337

Abstract

The rate of mutation for nucleotide substitution is generally higher among males than among females, likely owing to the larger number of DNA replications in spermatogenesis than in oogenesis. For insertion and deletion (indel) mutations, data from a few human genetic disease loci indicate that the two sexes may mutate at similar rates, possibly because such mutations arise in connection with meiotic crossing over. To address origin- and sex-specific rates of indel mutation we have conducted the first large-scale molecular evolutionary analysis of indels in noncoding DNA sequences from sex chromosomes. The rates are similar on the X and Y chromosomes of primates but about twice as high on the avian Z chromosome as on the W chromosome. The fact that indels are not uncommon on the nonrecombining Y and W chromosomes excludes meiotic crossing over as the main cause of indel mutation. On the other hand, the similar rates on X and Y indicate that the number of DNA replications (higher for Y than for X) is also not the main factor. Our observations are therefore consistent with a role of both DNA replication and recombination in the generation of short insertion and deletion mutations. A significant excess of deletion compared to insertion events is observed on the avian W chromosome, consistent with gradual DNA loss on a nonrecombining chromosome.

Full Text

The Full Text of this article is available as a PDF (90.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumer A., Dutly F., Balmer D., Riegel M., Tükel T., Krajewska-Walasek M., Schinzel A. A. High level of unequal meiotic crossovers at the origin of the 22q11. 2 and 7q11.23 deletions. Hum Mol Genet. 1998 May;7(5):887–894. doi: 10.1093/hmg/7.5.887. [DOI] [PubMed] [Google Scholar]
  2. Bohossian H. B., Skaletsky H., Page D. C. Unexpectedly similar rates of nucleotide substitution found in male and female hominids. Nature. 2000 Aug 10;406(6796):622–625. doi: 10.1038/35020557. [DOI] [PubMed] [Google Scholar]
  3. Carmichael A. N., Fridolfsson A. K., Halverson J., Ellegren H. Male-biased mutation rates revealed from Z and W chromosome-linked ATP synthase alpha-subunit (ATP5A1) sequences in birds. J Mol Evol. 2000 May;50(5):443–447. doi: 10.1007/s002390010046. [DOI] [PubMed] [Google Scholar]
  4. Comeron J. M., Kreitman M. The correlation between intron length and recombination in drosophila. Dynamic equilibrium between mutational and selective forces. Genetics. 2000 Nov;156(3):1175–1190. doi: 10.1093/genetics/156.3.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crow J. F. A new study challenges the current belief of a high human male:female mutation ratio. Trends Genet. 2000 Dec;16(12):525–526. doi: 10.1016/s0168-9525(00)02136-3. [DOI] [PubMed] [Google Scholar]
  6. Crow J. F. The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8380–8386. doi: 10.1073/pnas.94.16.8380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crow J. F. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet. 2000 Oct;1(1):40–47. doi: 10.1038/35049558. [DOI] [PubMed] [Google Scholar]
  8. Ebersberger Ingo, Metzler Dirk, Schwarz Carsten, Päbo Svante. Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet. 2002 Apr 30;70(6):1490–1497. doi: 10.1086/340787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellegren H., Fridolfsson A. K. Male-driven evolution of DNA sequences in birds. Nat Genet. 1997 Oct;17(2):182–184. doi: 10.1038/ng1097-182. [DOI] [PubMed] [Google Scholar]
  10. Ellegren Hans. Human mutation--blame (mostly) men. Nat Genet. 2002 May;31(1):9–10. doi: 10.1038/ng0502-9. [DOI] [PubMed] [Google Scholar]
  11. Graur D., Shuali Y., Li W. H. Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol. 1989 Apr;28(4):279–285. doi: 10.1007/BF02103423. [DOI] [PubMed] [Google Scholar]
  12. Grimm T., Meng G., Liechti-Gallati S., Bettecken T., Müller C. R., Müller B. On the origin of deletions and point mutations in Duchenne muscular dystrophy: most deletions arise in oogenesis and most point mutations result from events in spermatogenesis. J Med Genet. 1994 Mar;31(3):183–186. doi: 10.1136/jmg.31.3.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hurst L. D., Ellegren H. Sex biases in the mutation rate. Trends Genet. 1998 Nov;14(11):446–452. doi: 10.1016/s0168-9525(98)01577-7. [DOI] [PubMed] [Google Scholar]
  14. Kahn N. W., Quinn T. W. Male-driven evolution among Eoaves? A test of the replicative division hypothesis in a heterogametic female (ZW) system. J Mol Evol. 1999 Dec;49(6):750–759. doi: 10.1007/pl00006597. [DOI] [PubMed] [Google Scholar]
  15. Ketterling R. P., Vielhaber E. L., Lind T. J., Thorland E. C., Sommer S. S. The rates and patterns of deletions in the human factor IX gene. Am J Hum Genet. 1994 Feb;54(2):201–213. [PMC free article] [PubMed] [Google Scholar]
  16. Kumar S., Tamura K., Jakobsen I. B., Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics. 2001 Dec;17(12):1244–1245. doi: 10.1093/bioinformatics/17.12.1244. [DOI] [PubMed] [Google Scholar]
  17. Kunkel T. A., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. doi: 10.1146/annurev.biochem.69.1.497. [DOI] [PubMed] [Google Scholar]
  18. Kunkel T. A. Misalignment-mediated DNA synthesis errors. Biochemistry. 1990 Sep 4;29(35):8003–8011. doi: 10.1021/bi00487a001. [DOI] [PubMed] [Google Scholar]
  19. Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J Biol Chem. 1988 Oct 15;263(29):14784–14789. [PubMed] [Google Scholar]
  20. Lázaro C., Gaona A., Ainsworth P., Tenconi R., Vidaud D., Kruyer H., Ars E., Volpini V., Estivill X. Sex differences in mutational rate and mutational mechanism in the NF1 gene in neurofibromatosis type 1 patients. Hum Genet. 1996 Dec;98(6):696–699. doi: 10.1007/s004390050287. [DOI] [PubMed] [Google Scholar]
  21. López Correa C., Brems H., Lázaro C., Marynen P., Legius E. Unequal meiotic crossover: a frequent cause of NF1 microdeletions. Am J Hum Genet. 2000 Apr 20;66(6):1969–1974. doi: 10.1086/302920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Makova Kateryna D., Li Wen-Hsiung. Strong male-driven evolution of DNA sequences in humans and apes. Nature. 2002 Apr 11;416(6881):624–626. doi: 10.1038/416624a. [DOI] [PubMed] [Google Scholar]
  23. Miyata T., Hayashida H., Kuma K., Mitsuyasu K., Yasunaga T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb Symp Quant Biol. 1987;52:863–867. doi: 10.1101/sqb.1987.052.01.094. [DOI] [PubMed] [Google Scholar]
  24. Mol M. J., Stuyt P. M., Stalenhoef A. F. Effectiviteit en veiligheid van simvastatine, een nieuw cholesterolverlagend geneesmiddel. Ned Tijdschr Geneeskd. 1989 Feb 18;133(7):362–366. [PubMed] [Google Scholar]
  25. Montell H., Fridolfsson A. K., Ellegren H. Contrasting levels of nucleotide diversity on the avian Z and W sex chromosomes. Mol Biol Evol. 2001 Nov;18(11):2010–2016. doi: 10.1093/oxfordjournals.molbev.a003742. [DOI] [PubMed] [Google Scholar]
  26. Nachman M. W., Crowell S. L. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000 Sep;156(1):297–304. doi: 10.1093/genetics/156.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Osheroff W. P., Beard W. A., Yin S., Wilson S. H., Kunkel T. A. Minor groove interactions at the DNA polymerase beta active site modulate single-base deletion error rates. J Biol Chem. 2000 Sep 8;275(36):28033–28038. doi: 10.1074/jbc.M003462200. [DOI] [PubMed] [Google Scholar]
  28. Petrov D. A. Evolution of genome size: new approaches to an old problem. Trends Genet. 2001 Jan;17(1):23–28. doi: 10.1016/s0168-9525(00)02157-0. [DOI] [PubMed] [Google Scholar]
  29. Petrov D. A., Hartl D. L. High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. Mol Biol Evol. 1998 Mar;15(3):293–302. doi: 10.1093/oxfordjournals.molbev.a025926. [DOI] [PubMed] [Google Scholar]
  30. Petrov D. A., Hartl D. L. Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1475–1479. doi: 10.1073/pnas.96.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Petrov D. A., Sangster T. A., Johnston J. S., Hartl D. L., Shaw K. L. Evidence for DNA loss as a determinant of genome size. Science. 2000 Feb 11;287(5455):1060–1062. doi: 10.1126/science.287.5455.1060. [DOI] [PubMed] [Google Scholar]
  32. Saitou N., Ueda S. Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates. Mol Biol Evol. 1994 May;11(3):504–512. doi: 10.1093/oxfordjournals.molbev.a040130. [DOI] [PubMed] [Google Scholar]
  33. Shimmin L. C., Chang B. H., Li W. H. Male-driven evolution of DNA sequences. Nature. 1993 Apr 22;362(6422):745–747. doi: 10.1038/362745a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES