Abstract
For an admixed population, an important question is how much genetic contribution comes from each parental population. Several methods have been developed to estimate such admixture proportions, using data on genetic markers sampled from parental and admixed populations. In this study, I propose a likelihood method to estimate jointly the admixture proportions, the genetic drift that occurred to the admixed population and each parental population during the period between the hybridization and sampling events, and the genetic drift in each ancestral population within the interval between their split and hybridization. The results from extensive simulations using various combinations of relevant parameter values show that in general much more accurate and precise estimates of admixture proportions are obtained from the likelihood method than from previous methods. The likelihood method also yields reasonable estimates of genetic drift that occurred to each population, which translate into relative effective sizes (N(e)) or absolute average N(e)'s if the times when the relevant events (such as population split, admixture, and sampling) occurred are known. The proposed likelihood method also has features such as relatively low computational requirement compared with previous ones, flexibility for admixture models, and marker types. In particular, it allows for missing data from a contributing parental population. The method is applied to a human data set and a wolflike canids data set, and the results obtained are discussed in comparison with those from other estimators and from previous studies.
Full Text
The Full Text of this article is available as a PDF (220.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertorelle G., Excoffier L. Inferring admixture proportions from molecular data. Mol Biol Evol. 1998 Oct;15(10):1298–1311. doi: 10.1093/oxfordjournals.molbev.a025858. [DOI] [PubMed] [Google Scholar]
- Chakraborty R., Kamboh M. I., Nwankwo M., Ferrell R. E. Caucasian genes in American blacks: new data. Am J Hum Genet. 1992 Jan;50(1):145–155. [PMC free article] [PubMed] [Google Scholar]
- Chakraborty R., Weiss K. M. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9119–9123. doi: 10.1073/pnas.85.23.9119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakraborty R., Weiss K. M. Frequencies of complex diseases in hybrid populations. Am J Phys Anthropol. 1986 Aug;70(4):489–503. doi: 10.1002/ajpa.1330700408. [DOI] [PubMed] [Google Scholar]
- Chikhi L., Bruford M. W., Beaumont M. A. Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo. Genetics. 2001 Jul;158(3):1347–1362. doi: 10.1093/genetics/158.3.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dupanloup I., Bertorelle G. Inferring admixture proportions from molecular data: extension to any number of parental populations. Mol Biol Evol. 2001 Apr;18(4):672–675. doi: 10.1093/oxfordjournals.molbev.a003847. [DOI] [PubMed] [Google Scholar]
- Elston R. C. The estimation of admixture in racial hybrids. Ann Hum Genet. 1971 Jul;35(1):9–17. doi: 10.1111/j.1469-1809.1956.tb01373.x. [DOI] [PubMed] [Google Scholar]
- Long J. C. The genetic structure of admixed populations. Genetics. 1991 Feb;127(2):417–428. doi: 10.1093/genetics/127.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKeigue P. M., Carpenter J. R., Parra E. J., Shriver M. D. Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African-American populations. Ann Hum Genet. 2000 Mar;64(Pt 2):171–186. doi: 10.1017/S0003480000008022. [DOI] [PubMed] [Google Scholar]
- Parra E. J., Marcini A., Akey J., Martinson J., Batzer M. A., Cooper R., Forrester T., Allison D. B., Deka R., Ferrell R. E. Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet. 1998 Dec;63(6):1839–1851. doi: 10.1086/302148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBERTS D. F., HIORNS R. W. METHODS OF ANALYSIS OF THE GENETIC COMPOSITION OF A HYBRID POPULATION. Hum Biol. 1965 Feb;37:38–43. [PubMed] [Google Scholar]
- Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson E. A. The Icelandic admixture problem. Ann Hum Genet. 1973 Jul;37(1):69–80. doi: 10.1111/j.1469-1809.1973.tb01815.x. [DOI] [PubMed] [Google Scholar]
- Vila C, Amorim IR, Leonard JA, Posada D, Castroviejo J, Petrucci-Fonseca F, Crandall KA, Ellegren H, Wayne RK. Mitochondrial DNA phylogeography and population history of the grey wolf canis lupus. Mol Ecol. 1999 Dec;8(12):2089–2103. doi: 10.1046/j.1365-294x.1999.00825.x. [DOI] [PubMed] [Google Scholar]
- Wang J. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res. 2001 Dec;78(3):243–257. doi: 10.1017/s0016672301005286. [DOI] [PubMed] [Google Scholar]