Skip to main content
Genetics logoLink to Genetics
. 2003 Jun;164(2):565–574. doi: 10.1093/genetics/164.2.565

The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex.

Richard L Kelley 1, Mitzi I Kuroda 1
PMCID: PMC1462573  PMID: 12807777

Abstract

The Drosophila MSL complex consists of at least six proteins and two noncoding roX RNAs that mediate dosage compensation. It acts to remodel the male's X chromatin by covalently modifying the amino terminal tails of histones. The roX1 and roX2 genes are thought to be nucleation sites for assembly and spreading of MSL complexes into surrounding chromatin where they roughly double the rates of transcription. We generated many transgenic stocks in which the roX1 gene was moved from its normal location on the X to new autosomal sites. Approximately 10% of such lines displayed unusual sexually dimorphic expression patterns of the transgene's mini-white eye-color marker. Males often displayed striking mosaic pigmentation patterns similar to those seen in position-effect variegation and yet most inserts were in euchromatic locations. In many of these stocks, female mini-white expression was very low or absent. The male-specific activation of mini-white depended upon the MSL complex. We propose that these transgenes are inserted in several different types of repressive chromatin environments that inhibit mini-white expression. Males are able to overcome this silencing through the action of the MSL complex spreading from the roX1 gene and remodeling the local chromatin to allow transcription. The potency with which an ectopic MSL complex overcomes silent chromatin suggests that its normal action on the X must be under strict regulation.

Full Text

The Full Text of this article is available as a PDF (455.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrein H., Axel R. Genes expressed in neurons of adult male Drosophila. Cell. 1997 Feb 21;88(4):459–469. doi: 10.1016/s0092-8674(00)81886-3. [DOI] [PubMed] [Google Scholar]
  2. Badenhorst Paul, Voas Matthew, Rebay Ilaria, Wu Carl. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 2002 Dec 15;16(24):3186–3198. doi: 10.1101/gad.1032202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bashaw G. J., Baker B. S. The msl-2 dosage compensation gene of Drosophila encodes a putative DNA-binding protein whose expression is sex specifically regulated by Sex-lethal. Development. 1995 Oct;121(10):3245–3258. doi: 10.1242/dev.121.10.3245. [DOI] [PubMed] [Google Scholar]
  4. Bhadra U., Pal-Bhadra M., Birchler J. A. Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics. 1999 May;152(1):249–268. doi: 10.1093/genetics/152.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birve A., Sengupta A. K., Beuchle D., Larsson J., Kennison J. A., Rasmuson-Lestander A, Müller J. Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development. 2001 Sep;128(17):3371–3379. doi: 10.1242/dev.128.17.3371. [DOI] [PubMed] [Google Scholar]
  6. Chan C. S., Rastelli L., Pirrotta V. A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J. 1994 Jun 1;13(11):2553–2564. doi: 10.1002/j.1460-2075.1994.tb06545.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang K. A., Kuroda M. I. Modulation of MSL1 abundance in female Drosophila contributes to the sex specificity of dosage compensation. Genetics. 1998 Oct;150(2):699–709. doi: 10.1093/genetics/150.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cline T. W., Meyer B. J. Vive la différence: males vs females in flies vs worms. Annu Rev Genet. 1996;30:637–702. doi: 10.1146/annurev.genet.30.1.637. [DOI] [PubMed] [Google Scholar]
  9. Cléard F., Spierer P. Position-effect variegation in Drosophila: the modifier Su(var)3-7 is a modular DNA-binding protein. EMBO Rep. 2001 Nov 21;2(12):1095–1100. doi: 10.1093/embo-reports/kve243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corona Davide F. V., Clapier Cedric R., Becker Peter B., Tamkun John W. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 2002 Mar;3(3):242–247. doi: 10.1093/embo-reports/kvf056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cryderman D. E., Cuaycong M. H., Elgin S. C., Wallrath L. L. Characterization of sequences associated with position-effect variegation at pericentric sites in Drosophila heterochromatin. Chromosoma. 1998 Nov;107(5):277–285. doi: 10.1007/s004120050309. [DOI] [PubMed] [Google Scholar]
  12. Cryderman D. E., Morris E. J., Biessmann H., Elgin S. C., Wallrath L. L. Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J. 1999 Jul 1;18(13):3724–3735. doi: 10.1093/emboj/18.13.3724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Deuring R., Fanti L., Armstrong J. A., Sarte M., Papoulas O., Prestel M., Daubresse G., Verardo M., Moseley S. L., Berloco M. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol Cell. 2000 Feb;5(2):355–365. doi: 10.1016/s1097-2765(00)80430-x. [DOI] [PubMed] [Google Scholar]
  14. Dorer D. R., Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994 Jul 1;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1. [DOI] [PubMed] [Google Scholar]
  15. Eissenberg J. C., James T. C., Foster-Hartnett D. M., Hartnett T., Ngan V., Elgin S. C. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923–9927. doi: 10.1073/pnas.87.24.9923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Emery J. F., Bier E. Specificity of CNS and PNS regulatory subelements comprising pan-neural enhancers of the deadpan and scratch genes is achieved by repression. Development. 1995 Nov;121(11):3549–3560. doi: 10.1242/dev.121.11.3549. [DOI] [PubMed] [Google Scholar]
  17. Fauvarque M. O., Dura J. M. polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev. 1993 Aug;7(8):1508–1520. doi: 10.1101/gad.7.8.1508. [DOI] [PubMed] [Google Scholar]
  18. Fitch D. H., Strausbaugh L. D., Barrett V. On the origins of tandemly repeated genes: does histone gene copy number in Drosophila reflect chromosomal location? Chromosoma. 1990 Apr;99(2):118–124. doi: 10.1007/BF01735327. [DOI] [PubMed] [Google Scholar]
  19. Franke A., Baker B. S. The rox1 and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell. 1999 Jul;4(1):117–122. doi: 10.1016/s1097-2765(00)80193-8. [DOI] [PubMed] [Google Scholar]
  20. Franke A., Dernburg A., Bashaw G. J., Baker B. S. Evidence that MSL-mediated dosage compensation in Drosophila begins at blastoderm. Development. 1996 Sep;122(9):2751–2760. doi: 10.1242/dev.122.9.2751. [DOI] [PubMed] [Google Scholar]
  21. Gomez-Skarmeta J. L., Diez del Corral R., de la Calle-Mustienes E., Ferré-Marcó D., Modolell J. Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell. 1996 Apr 5;85(1):95–105. doi: 10.1016/s0092-8674(00)81085-5. [DOI] [PubMed] [Google Scholar]
  22. Grewal Shiv I. S., Elgin Sarah C. R. Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev. 2002 Apr;12(2):178–187. doi: 10.1016/s0959-437x(02)00284-8. [DOI] [PubMed] [Google Scholar]
  23. Gu W., Wei X., Pannuti A., Lucchesi J. C. Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J. 2000 Oct 2;19(19):5202–5211. doi: 10.1093/emboj/19.19.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Halder G., Callaerts P., Flister S., Walldorf U., Kloter U., Gehring W. J. Eyeless initiates the expression of both sine oculis and eyes absent during Drosophila compound eye development. Development. 1998 Jun;125(12):2181–2191. doi: 10.1242/dev.125.12.2181. [DOI] [PubMed] [Google Scholar]
  25. Henry R. A., Tews B., Li X., Scott M. J. Recruitment of the male-specific lethal (MSL) dosage compensation complex to an autosomally integrated roX chromatin entry site correlates with an increased expression of an adjacent reporter gene in male Drosophila. J Biol Chem. 2001 Jun 11;276(34):31953–31958. doi: 10.1074/jbc.M103008200. [DOI] [PubMed] [Google Scholar]
  26. Kageyama Y., Mengus G., Gilfillan G., Kennedy H. G., Stuckenholz C., Kelley R. L., Becker P. B., Kuroda M. I. Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site. EMBO J. 2001 May 1;20(9):2236–2245. doi: 10.1093/emboj/20.9.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kassis J. A., VanSickle E. P., Sensabaugh S. M. A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics. 1991 Aug;128(4):751–761. doi: 10.1093/genetics/128.4.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kehl B. T., Cho K. O., Choi K. W. mirror, a Drosophila homeobox gene in the Iroquois complex, is required for sensory organ and alula formation. Development. 1998 Apr;125(7):1217–1227. doi: 10.1242/dev.125.7.1217. [DOI] [PubMed] [Google Scholar]
  29. Kelley R. L., Meller V. H., Gordadze P. R., Roman G., Davis R. L., Kuroda M. I. Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell. 1999 Aug 20;98(4):513–522. doi: 10.1016/s0092-8674(00)81979-0. [DOI] [PubMed] [Google Scholar]
  30. Kelley R. L., Solovyeva I., Lyman L. M., Richman R., Solovyev V., Kuroda M. I. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosomes and female lethality in Drosophila. Cell. 1995 Jun 16;81(6):867–877. doi: 10.1016/0092-8674(95)90007-1. [DOI] [PubMed] [Google Scholar]
  31. Lai Z. C., Fortini M. E., Rubin G. M. The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech Dev. 1991 Jun;34(2-3):123–134. doi: 10.1016/0925-4773(91)90049-c. [DOI] [PubMed] [Google Scholar]
  32. McNeill H., Yang C. H., Brodsky M., Ungos J., Simon M. A. mirror encodes a novel PBX-class homeoprotein that functions in the definition of the dorsal-ventral border in the Drosophila eye. Genes Dev. 1997 Apr 15;11(8):1073–1082. doi: 10.1101/gad.11.8.1073. [DOI] [PubMed] [Google Scholar]
  33. Meller V. H. Dosage compensation: making 1X equal 2X. Trends Cell Biol. 2000 Feb;10(2):54–59. doi: 10.1016/s0962-8924(99)01693-1. [DOI] [PubMed] [Google Scholar]
  34. Meller V. H., Wu K. H., Roman G., Kuroda M. I., Davis R. L. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell. 1997 Feb 21;88(4):445–457. doi: 10.1016/s0092-8674(00)81885-1. [DOI] [PubMed] [Google Scholar]
  35. Netter S., Fauvarque M. O., Diez del Corral R., Dura J. M., Coen D. white+ transgene insertions presenting a dorsal/ventral pattern define a single cluster of homeobox genes that is silenced by the polycomb-group proteins in Drosophila melanogaster. Genetics. 1998 May;149(1):257–275. doi: 10.1093/genetics/149.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nishioka Kenichi, Rice Judd C., Sarma Kavitha, Erdjument-Bromage Hediye, Werner Janis, Wang Yanming, Chuikov Sergei, Valenzuela Pablo, Tempst Paul, Steward Ruth. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell. 2002 Jun;9(6):1201–1213. doi: 10.1016/s1097-2765(02)00548-8. [DOI] [PubMed] [Google Scholar]
  37. Park Yongkyu, Kelley Richard L., Oh Hyangyee, Kuroda Mitzi I., Meller Victoria H. Extent of chromatin spreading determined by roX RNA recruitment of MSL proteins. Science. 2002 Nov 22;298(5598):1620–1623. doi: 10.1126/science.1076686. [DOI] [PubMed] [Google Scholar]
  38. Patton J. S., Gomes X. V., Geyer P. K. Position-independent germline transformation in Drosophila using a cuticle pigmentation gene as a selectable marker. Nucleic Acids Res. 1992 Nov 11;20(21):5859–5860. doi: 10.1093/nar/20.21.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  40. Rastelli L., Chan C. S., Pirrotta V. Related chromosome binding sites for zeste, suppressors of zeste and Polycomb group proteins in Drosophila and their dependence on Enhancer of zeste function. EMBO J. 1993 Apr;12(4):1513–1522. doi: 10.1002/j.1460-2075.1993.tb05795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rastelli L., Richman R., Kuroda M. I. The dosage compensation regulators MLE, MSL-1 and MSL-2 are interdependent since early embryogenesis in Drosophila. Mech Dev. 1995 Oct;53(2):223–233. doi: 10.1016/0925-4773(95)00438-7. [DOI] [PubMed] [Google Scholar]
  42. Roark M., Sturtevant M. A., Emery J., Vaessin H., Grell E., Bier E. scratch, a pan-neural gene encoding a zinc finger protein related to snail, promotes neuronal development. Genes Dev. 1995 Oct 1;9(19):2384–2398. doi: 10.1101/gad.9.19.2384. [DOI] [PubMed] [Google Scholar]
  43. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Roseman R. R., Johnson E. A., Rodesch C. K., Bjerke M., Nagoshi R. N., Geyer P. K. A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. Genetics. 1995 Nov;141(3):1061–1074. doi: 10.1093/genetics/141.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sigrist C. J., Pirrotta V. Chromatin insulator elements block the silencing of a target gene by the Drosophila polycomb response element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics. 1997 Sep;147(1):209–221. doi: 10.1093/genetics/147.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sun F. L., Cuaycong M. H., Craig C. A., Wallrath L. L., Locke J., Elgin S. C. The fourth chromosome of Drosophila melanogaster: interspersed euchromatic and heterochromatic domains. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5340–5345. doi: 10.1073/pnas.090530797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sun Y. H., Tsai C. J., Green M. M., Chao J. L., Yu C. T., Jaw T. J., Yeh J. Y., Bolshakov V. N. White as a reporter gene to detect transcriptional silencers specifying position-specific gene expression during Drosophila melanogaster eye development. Genetics. 1995 Nov;141(3):1075–1086. doi: 10.1093/genetics/141.3.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wakimoto B. T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell. 1998 May 1;93(3):321–324. doi: 10.1016/s0092-8674(00)81159-9. [DOI] [PubMed] [Google Scholar]
  49. Wallrath L. L., Elgin S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995 May 15;9(10):1263–1277. doi: 10.1101/gad.9.10.1263. [DOI] [PubMed] [Google Scholar]
  50. Wallrath L. L., Guntur V. P., Rosman L. E., Elgin S. C. DNA representation of variegating heterochromatic P-element inserts in diploid and polytene tissues of Drosophila melanogaster. Chromosoma. 1996 Apr;104(7):519–527. doi: 10.1007/BF00352116. [DOI] [PubMed] [Google Scholar]
  51. Wallrath L. L. Unfolding the mysteries of heterochromatin. Curr Opin Genet Dev. 1998 Apr;8(2):147–153. doi: 10.1016/s0959-437x(98)80135-4. [DOI] [PubMed] [Google Scholar]
  52. Yan Christopher M., Dobie Kenneth W., Le Hiep D., Konev Alexander Y., Karpen Gary H. Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. Genetics. 2002 May;161(1):217–229. doi: 10.1093/genetics/161.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zhou S., Yang Y., Scott M. J., Pannuti A., Fehr K. C., Eisen A., Koonin E. V., Fouts D. L., Wrightsman R., Manning J. E. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J. 1995 Jun 15;14(12):2884–2895. doi: 10.1002/j.1460-2075.1995.tb07288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zink D., Paro R. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J. 1995 Nov 15;14(22):5660–5671. doi: 10.1002/j.1460-2075.1995.tb00253.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES