Skip to main content
Genetics logoLink to Genetics
. 2003 Jun;164(2):589–601. doi: 10.1093/genetics/164.2.589

Phenotypic analysis of separation-of-function alleles of MEI-41, Drosophila ATM/ATR.

Anne Laurençon 1, Amanda Purdy 1, Jeff Sekelsky 1, R Scott Hawley 1, Tin Tin Su 1
PMCID: PMC1462579  PMID: 12807779

Abstract

ATM/ATR kinases act as signal transducers in eukaryotic DNA damage and replication checkpoints. Mutations in ATM/ATR homologs have pleiotropic effects that range from sterility to increased killing by genotoxins in humans, mice, and Drosophila. Here we report the generation of a null allele of mei-41, Drosophila ATM/ATR homolog, and the use of it to document a semidominant effect on a larval mitotic checkpoint and methyl methanesulfonate (MMS) sensitivity. We also tested the role of mei-41 in a recently characterized checkpoint that delays metaphase/anaphase transition after DNA damage in cellular embryos. We then compare five existing mei-41 alleles to the null with respect to known phenotypes (female sterility, cell cycle checkpoints, and MMS resistance). We find that not all phenotypes are affected equally by each allele, i.e., the functions of MEI-41 in ensuring fertility, cell cycle regulation, and resistance to genotoxins are genetically separable. We propose that MEI-41 acts not in a single rigid signal transduction pathway, but in multiple molecular contexts to carry out its many functions. Sequence analysis identified mutations, which, for most alleles, fall in the poorly characterized region outside the kinase domain; this allowed us to tentatively identify additional functional domains of MEI-41 that could be subjected to future structure-function studies of this key molecule.

Full Text

The Full Text of this article is available as a PDF (367.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Carpenter A. T. Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics. 1972 Jun;71(2):255–286. doi: 10.1093/genetics/71.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banga S. S., Velazquez A., Boyd J. B. P transposition in Drosophila provides a new tool for analyzing postreplication repair and double-strand break repair. Mutat Res. 1991 Jul;255(1):79–88. doi: 10.1016/0921-8777(91)90020-p. [DOI] [PubMed] [Google Scholar]
  3. Banga S. S., Yamamoto A. H., Mason J. M., Boyd J. B. Molecular cloning of mei-41, a gene that influences both somatic and germline chromosome metabolism of Drosophila melanogaster. Mol Gen Genet. 1995 Jan 20;246(2):148–155. doi: 10.1007/BF00294677. [DOI] [PubMed] [Google Scholar]
  4. Barlow C., Hirotsune S., Paylor R., Liyanage M., Eckhaus M., Collins F., Shiloh Y., Crawley J. N., Ried T., Tagle D. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell. 1996 Jul 12;86(1):159–171. doi: 10.1016/s0092-8674(00)80086-0. [DOI] [PubMed] [Google Scholar]
  5. Bentley N. J., Holtzman D. A., Flaggs G., Keegan K. S., DeMaggio A., Ford J. C., Hoekstra M., Carr A. M. The Schizosaccharomyces pombe rad3 checkpoint gene. EMBO J. 1996 Dec 2;15(23):6641–6651. [PMC free article] [PubMed] [Google Scholar]
  6. Bosotti R., Isacchi A., Sonnhammer E. L. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci. 2000 May;25(5):225–227. doi: 10.1016/s0968-0004(00)01563-2. [DOI] [PubMed] [Google Scholar]
  7. Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brodsky M. H., Sekelsky J. J., Tsang G., Hawley R. S., Rubin G. M. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 2000 Mar 15;14(6):666–678. [PMC free article] [PubMed] [Google Scholar]
  9. Brown E. J., Baltimore D. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 2000 Feb 15;14(4):397–402. [PMC free article] [PubMed] [Google Scholar]
  10. Chapman C. R., Evans S. T., Carr A. M., Enoch T. Requirement of sequences outside the conserved kinase domain of fission yeast Rad3p for checkpoint control. Mol Biol Cell. 1999 Oct;10(10):3223–3238. doi: 10.1091/mbc.10.10.3223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cliby W. A., Roberts C. J., Cimprich K. A., Stringer C. M., Lamb J. R., Schreiber S. L., Friend S. H. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 1998 Jan 2;17(1):159–169. doi: 10.1093/emboj/17.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dodd I. B., Egan J. B. Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res. 1990 Sep 11;18(17):5019–5026. doi: 10.1093/nar/18.17.5019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elson A., Wang Y., Daugherty C. J., Morton C. C., Zhou F., Campos-Torres J., Leder P. Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13084–13089. doi: 10.1073/pnas.93.23.13084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  15. Falk D. R., Roselli L., Curtiss S., Halladay D., Klufas C. The characterization of chromosome breaks in Drosophila melanogaster. I. Mass isolation of deficiencies which have an end point in the 14A-15A region. Mutat Res. 1984 Mar;126(1):25–34. doi: 10.1016/0027-5107(84)90166-0. [DOI] [PubMed] [Google Scholar]
  16. FlyBase Consortium The FlyBase database of the Drosophila genome projects and community literature. Nucleic Acids Res. 2002 Jan 1;30(1):106–108. doi: 10.1093/nar/30.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garner M., van Kreeveld S., Su T. T. mei-41 and bub1 block mitosis at two distinct steps in response to incomplete DNA replication in Drosophila embryos. Curr Biol. 2001 Oct 16;11(20):1595–1599. doi: 10.1016/s0960-9822(01)00483-3. [DOI] [PubMed] [Google Scholar]
  18. Ghabrial A., Schüpbach T. Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol. 1999 Oct;1(6):354–357. doi: 10.1038/14046. [DOI] [PubMed] [Google Scholar]
  19. Hari K. L., Santerre A., Sekelsky J. J., McKim K. S., Boyd J. B., Hawley R. S. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell. 1995 Sep 8;82(5):815–821. doi: 10.1016/0092-8674(95)90478-6. [DOI] [PubMed] [Google Scholar]
  20. Jimenez G., Yucel J., Rowley R., Subramani S. The rad3+ gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4952–4956. doi: 10.1073/pnas.89.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson-Schlitz D. M., Engels W. R. P-element-induced interallelic gene conversion of insertions and deletions in Drosophila melanogaster. Mol Cell Biol. 1993 Nov;13(11):7006–7018. doi: 10.1128/mcb.13.11.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kato R., Ogawa H. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 1994 Aug 11;22(15):3104–3112. doi: 10.1093/nar/22.15.3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Khanna K. K., Keating K. E., Kozlov S., Scott S., Gatei M., Hobson K., Taya Y., Gabrielli B., Chan D., Lees-Miller S. P. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet. 1998 Dec;20(4):398–400. doi: 10.1038/3882. [DOI] [PubMed] [Google Scholar]
  24. Kim S. T., Lim D. S., Canman C. E., Kastan M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999 Dec 31;274(53):37538–37543. doi: 10.1074/jbc.274.53.37538. [DOI] [PubMed] [Google Scholar]
  25. Martinho R. G., Lindsay H. D., Flaggs G., DeMaggio A. J., Hoekstra M. F., Carr A. M., Bentley N. J. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 1998 Dec 15;17(24):7239–7249. doi: 10.1093/emboj/17.24.7239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mason J. M., Green M. M., Shaw K. E., Boyd J. B. Genetic analysis of X-linked mutagen-sensitive mutants of Drosophila melanogaster. Mutat Res. 1981 May;81(3):329–343. doi: 10.1016/0027-5107(81)90120-2. [DOI] [PubMed] [Google Scholar]
  27. Mason J. M., Scobie N. N., Yamamoto A. H. Genetic characterization of the mei-41 locus in Drosophila melanogaster. Mol Gen Genet. 1989 Jan;215(2):190–199. doi: 10.1007/BF00339717. [DOI] [PubMed] [Google Scholar]
  28. Matsuoka S., Huang M., Elledge S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998 Dec 4;282(5395):1893–1897. doi: 10.1126/science.282.5395.1893. [DOI] [PubMed] [Google Scholar]
  29. Matsuoka S., Rotman G., Ogawa A., Shiloh Y., Tamai K., Elledge S. J. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10389–10394. doi: 10.1073/pnas.190030497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McKim K. S., Jang J. K., Sekelsky J. J., Laurencon A., Hawley R. S. mei-41 is required for precocious anaphase in Drosophila females. Chromosoma. 2000;109(1-2):44–49. doi: 10.1007/s004120050411. [DOI] [PubMed] [Google Scholar]
  31. Mohler J. D. Developmental genetics of the Drosophila egg. I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development. Genetics. 1977 Feb;85(2):259–272. doi: 10.1093/genetics/85.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morgan S. E., Lovly C., Pandita T. K., Shiloh Y., Kastan M. B. Fragments of ATM which have dominant-negative or complementing activity. Mol Cell Biol. 1997 Apr;17(4):2020–2029. doi: 10.1128/mcb.17.4.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Naeim A., Repinski C., Huo Y., Hong J. H., Chessa L., Naeim F., Gatti R. A. Ataxia-telangiectasia: flow cytometric cell-cycle analysis of lymphoblastoid cell lines in G2/M before and after gamma-irradiation. Mod Pathol. 1994 Jun;7(5):587–592. [PubMed] [Google Scholar]
  34. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  35. Sanchez Y., Desany B. A., Jones W. J., Liu Q., Wang B., Elledge S. J. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science. 1996 Jan 19;271(5247):357–360. doi: 10.1126/science.271.5247.357. [DOI] [PubMed] [Google Scholar]
  36. Savitsky K., Bar-Shira A., Gilad S., Rotman G., Ziv Y., Vanagaite L., Tagle D. A., Smith S., Uziel T., Sfez S. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Jun 23;268(5218):1749–1753. doi: 10.1126/science.7792600. [DOI] [PubMed] [Google Scholar]
  37. Savitsky K., Sfez S., Tagle D. A., Ziv Y., Sartiel A., Collins F. S., Shiloh Y., Rotman G. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet. 1995 Nov;4(11):2025–2032. doi: 10.1093/hmg/4.11.2025. [DOI] [PubMed] [Google Scholar]
  38. Scott D., Spreadborough A. R., Roberts S. A. Radiation-induced G2 delay and spontaneous chromosome aberrations in ataxia-telangiectasia homozygotes and heterozygotes. Int J Radiat Biol. 1994 Dec;66(6 Suppl):S157–S163. [PubMed] [Google Scholar]
  39. Seaton B. L., Yucel J., Sunnerhagen P., Subramani S. Isolation and characterization of the Schizosaccharomyces pombe rad3 gene, involved in the DNA damage and DNA synthesis checkpoints. Gene. 1992 Sep 21;119(1):83–89. doi: 10.1016/0378-1119(92)90069-2. [DOI] [PubMed] [Google Scholar]
  40. Sibon O. C., Laurençon A., Hawley R., Theurkauf W. E. The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr Biol. 1999 Mar 25;9(6):302–312. doi: 10.1016/s0960-9822(99)80138-9. [DOI] [PubMed] [Google Scholar]
  41. Siede W., Allen J. B., Elledge S. J., Friedberg E. C. The Saccharomyces cerevisiae MEC1 gene, which encodes a homolog of the human ATM gene product, is required for G1 arrest following radiation treatment. J Bacteriol. 1996 Oct;178(19):5841–5843. doi: 10.1128/jb.178.19.5841-5843.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smith P. D. Mutagen sensitivity of Drosophila melanogaster. I. Isolation and preliminary characterization of a methyl methanesulphonate-sensitive strain. Mutat Res. 1973 Nov;20(2):215–220. doi: 10.1016/0027-5107(73)90191-7. [DOI] [PubMed] [Google Scholar]
  43. Smits V. A., Klompmaker R., Arnaud L., Rijksen G., Nigg E. A., Medema R. H. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol. 2000 Sep;2(9):672–676. doi: 10.1038/35023629. [DOI] [PubMed] [Google Scholar]
  44. Spring Kevin, Ahangari Farida, Scott Shaun P., Waring Paul, Purdie David M., Chen Philip C., Hourigan Kevin, Ramsay Jonathan, McKinnon Peter J., Swift Michael. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nat Genet. 2002 Aug 26;32(1):185–190. doi: 10.1038/ng958. [DOI] [PubMed] [Google Scholar]
  45. Stanewsky R., Rendahl K. G., Dill M., Saumweber H. Genetic and molecular analysis of the X chromosomal region 14B17-14C4 in Drosophila melanogaster: loss of function in NONA, a nuclear protein common to many cell types, results in specific physiological and behavioral defects. Genetics. 1993 Oct;135(2):419–442. doi: 10.1093/genetics/135.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Su T. T., Jaklevic B. DNA damage leads to a Cyclin A-dependent delay in metaphase-anaphase transition in the Drosophila gastrula. Curr Biol. 2001 Jan 9;11(1):8–17. doi: 10.1016/s0960-9822(00)00042-7. [DOI] [PubMed] [Google Scholar]
  47. Su T. T., Walker J., Stumpff J. Activating the DNA damage checkpoint in a developmental context. Curr Biol. 2000 Feb 10;10(3):119–126. doi: 10.1016/s0960-9822(00)00300-6. [DOI] [PubMed] [Google Scholar]
  48. Tchirkov A., Bay J. O., Pernin D., Bignon Y. J., Rio P., Grancho M., Kwiatkowski F., Giollant M., Malet P., Verrelle P. Detection of heterozygous carriers of the ataxia-telangiectasia (ATM) gene by G2 phase chromosomal radiosensitivity of peripheral blood lymphocytes. Hum Genet. 1997 Dec;101(3):312–316. doi: 10.1007/s004390050634. [DOI] [PubMed] [Google Scholar]
  49. Yamamoto A. H., Brodberg R. K., Banga S. S., Boyd J. B., Mason J. M. Recovery and characterization of hybrid dysgenesis-induced mei-9 and mei-41 alleles of Drosophila melanogaster. Mutat Res. 1990 Mar;229(1):17–28. doi: 10.1016/0027-5107(90)90004-n. [DOI] [PubMed] [Google Scholar]
  50. al-Khodairy F., Carr A. M. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 1992 Apr;11(4):1343–1350. doi: 10.1002/j.1460-2075.1992.tb05179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. de Klein A., Muijtjens M., van Os R., Verhoeven Y., Smit B., Carr A. M., Lehmann A. R., Hoeijmakers J. H. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol. 2000 Apr 20;10(8):479–482. doi: 10.1016/s0960-9822(00)00447-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES