Skip to main content
Genetics logoLink to Genetics
. 2003 Jun;164(2):655–664. doi: 10.1093/genetics/164.2.655

Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat.

Li Huang 1, Steven A Brooks 1, Wanlong Li 1, John P Fellers 1, Harold N Trick 1, Bikram S Gill 1
PMCID: PMC1462593  PMID: 12807786

Abstract

We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a gene-rich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by diploid/polyploid shuttle mapping strategy. Cloning of Lr21 was confirmed by genetic transformation and by a stably inherited resistance phenotype in transgenic plants. Lr21 spans 4318 bp and encodes a 1080-amino-acid protein containing a conserved nucleotide-binding site (NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-acid sequence missing from known NBS-LRR proteins at the N terminus. Fine-structure genetic analysis at the Lr21 locus detected a noncrossover (recombination without exchange of flanking markers) within a 1415-bp region resulting from either a gene conversion tract of at least 191 bp or a double crossover. The successful map-based cloning approach as demonstrated here now opens the door for cloning of many crop-specific agronomic traits located in the gene-rich regions of bread wheat.

Full Text

The Full Text of this article is available as a PDF (263.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bendahmane A., Kanyuka K., Baulcombe D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell. 1999 May;11(5):781–792. doi: 10.1105/tpc.11.5.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borts R. H., Haber J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. doi: 10.1126/science.2820060. [DOI] [PubMed] [Google Scholar]
  4. Boyko Elena, Kalendar Ruslan, Korzun Victor, Fellers John, Korol Abraham, Schulman Alan H., Gill Bikram S. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Mol Biol. 2002 Mar-Apr;48(5-6):767–790. doi: 10.1023/a:1014831511810. [DOI] [PubMed] [Google Scholar]
  5. Brooks Steven A., Huang Li, Gill Bikram S., Fellers John P. Analysis of 106 kb of contiguous DNA sequence from the D genome of wheat reveals high gene density and a complex arrangement of genes related to disease resistance. Genome. 2002 Oct;45(5):963–972. doi: 10.1139/g02-049. [DOI] [PubMed] [Google Scholar]
  6. Brueggeman R., Rostoks N., Kudrna D., Kilian A., Han F., Chen J., Druka A., Steffenson B., Kleinhofs A. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A. 2002 Jun 20;99(14):9328–9333. doi: 10.1073/pnas.142284999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Colau D., Negrutiu I., Van Montagu M., Hernalsteens J. P. Complementation of a threonine dehydratase-deficient Nicotiana plumbaginifolia mutant after Agrobacterium tumefaciens-mediated transfer of the Saccharomyces cerevisiae ILV1 gene. Mol Cell Biol. 1987 Jul;7(7):2552–2557. doi: 10.1128/mcb.7.7.2552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Collins N., Drake J., Ayliffe M., Sun Q., Ellis J., Hulbert S., Pryor T. Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell. 1999 Jul;11(7):1365–1376. doi: 10.1105/tpc.11.7.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Curtis D., Clark S. H., Chovnick A., Bender W. Molecular analysis of recombination events in Drosophila. Genetics. 1989 Jul;122(3):653–661. doi: 10.1093/genetics/122.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dangl J. L., Jones J. D. Plant pathogens and integrated defence responses to infection. Nature. 2001 Jun 14;411(6839):826–833. doi: 10.1038/35081161. [DOI] [PubMed] [Google Scholar]
  11. Dooner H. K., Martínez-Férez I. M. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell. 1997 Sep;9(9):1633–1646. doi: 10.1105/tpc.9.9.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ellis J., Dodds P., Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol. 2000 Aug;3(4):278–284. doi: 10.1016/s1369-5266(00)00080-7. [DOI] [PubMed] [Google Scholar]
  13. Faris Justin D., Fellers John P., Brooks Steven A., Gill Bikram S. A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics. 2003 May;164(1):311–321. doi: 10.1093/genetics/164.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Faris Justin D., Gill Bikram S. Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome. 2002 Aug;45(4):706–718. doi: 10.1139/g02-036. [DOI] [PubMed] [Google Scholar]
  15. Feuillet C., Keller B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8265–8270. doi: 10.1073/pnas.96.14.8265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grant M. R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R. W., Dangl J. L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science. 1995 Aug 11;269(5225):843–846. doi: 10.1126/science.7638602. [DOI] [PubMed] [Google Scholar]
  17. Halterman D., Zhou F., Wei F., Wise R. P., Schulze-Lefert P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 2001 Feb;25(3):335–348. doi: 10.1046/j.1365-313x.2001.00982.x. [DOI] [PubMed] [Google Scholar]
  18. Hamilton C. M. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene. 1997 Oct 24;200(1-2):107–116. doi: 10.1016/s0378-1119(97)00388-0. [DOI] [PubMed] [Google Scholar]
  19. Haubold Bernhard, Kroymann Jürgen, Ratzka Andreas, Mitchell-Olds Thomas, Wiehe Thomas. Recombination and gene conversion in a 170-kb genomic region of Arabidopsis thaliana. Genetics. 2002 Jul;161(3):1269–1278. doi: 10.1093/genetics/161.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hilliker A. J., Harauz G., Reaume A. G., Gray M., Clark S. H., Chovnick A. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics. 1994 Aug;137(4):1019–1026. doi: 10.1093/genetics/137.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang Shaoxing, Sirikhachornkit Anchalee, Su Xiujuan, Faris Justin, Gill Bikram, Haselkorn Robert, Gornicki Piotr. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8133–8138. doi: 10.1073/pnas.072223799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hulbert S. H., Webb C. A., Smith S. M., Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol. 2001;39:285–312. doi: 10.1146/annurev.phyto.39.1.285. [DOI] [PubMed] [Google Scholar]
  23. Kilian A., Chen J., Han F., Steffenson B., Kleinhofs A. Towards map-based cloning of the barley stem rust resistance genes Rpg1 and rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol. 1997 Sep;35(1-2):187–195. [PubMed] [Google Scholar]
  24. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  25. Leister D., Kurth J., Laurie D. A., Yano M., Sasaki T., Devos K., Graner A., Schulze-Lefert P. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):370–375. doi: 10.1073/pnas.95.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nicolas A., Treco D., Schultes N. P., Szostak J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. doi: 10.1038/338035a0. [DOI] [PubMed] [Google Scholar]
  27. Olszewski N. E., Martin F. B., Ausubel F. M. Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 1988 Nov 25;16(22):10765–10782. doi: 10.1093/nar/16.22.10765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parham P., Adams E. J., Arnett K. L. The origins of HLA-A,B,C polymorphism. Immunol Rev. 1995 Feb;143:141–180. doi: 10.1111/j.1600-065x.1995.tb00674.x. [DOI] [PubMed] [Google Scholar]
  29. Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seah S., Spielmeyer W., Jahier J., Sivasithamparam K., Lagudah E. S. Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosum that confers resistance to nematode and rust pathogens in wheat. Mol Plant Microbe Interact. 2000 Mar;13(3):334–341. doi: 10.1094/MPMI.2000.13.3.334. [DOI] [PubMed] [Google Scholar]
  31. Werner J. E., Endo T. R., Gill B. S. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11307–11311. doi: 10.1073/pnas.89.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. White M. A., Wierdl M., Detloff P., Petes T. D. DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9755–9759. doi: 10.1073/pnas.88.21.9755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wiehe T., Mountain J., Parham P., Slatkin M. Distinguishing recombination and intragenic gene conversion by linkage disequilibrium patterns. Genet Res. 2000 Feb;75(1):61–73. doi: 10.1017/s0016672399004036. [DOI] [PubMed] [Google Scholar]
  34. Xu X., Hsia A. P., Zhang L., Nikolau B. J., Schnable P. S. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell. 1995 Dec;7(12):2151–2161. doi: 10.1105/tpc.7.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yao Hong, Zhou Qing, Li Jin, Smith Heather, Yandeau Marna, Nikolau Basil J., Schnable Patrick S. Molecular characterization of meiotic recombination across the 140-kb multigenic a1-sh2 interval of maize. Proc Natl Acad Sci U S A. 2002 Apr 16;99(9):6157–6162. doi: 10.1073/pnas.082562199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhou F., Kurth J., Wei F., Elliott C., Valè G., Yahiaoui N., Keller B., Somerville S., Wise R., Schulze-Lefert P. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell. 2001 Feb;13(2):337–350. doi: 10.1105/tpc.13.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES