Skip to main content
Genetics logoLink to Genetics
. 2003 Jun;164(2):511–519. doi: 10.1093/genetics/164.2.511

Dynamics of molecular markers linked to the resistance loci in a mosquito-Plasmodium system.

Guiyun Yan 1, David W Severson 1
PMCID: PMC1462597  PMID: 12807772

Abstract

Models on the evolution of resistance to parasitism generally assume fitness tradeoffs between the costs of being parasitized and the costs associated with resistance. This study tested this assumption using the yellow fever mosquito Aedes aegypti and malaria parasite Plasmodium gallinaceum system. Experimental mosquito populations were created by mixing susceptible and resistant strains in equal proportions, and then the dynamics of markers linked to loci for Plasmodium resistance and other unlinked neutral markers were determined over 12 generations. We found that when the mixed population was maintained under parasite-free conditions, the frequencies of alleles specific to the susceptible strain at markers closely linked to the loci for resistance (QTL markers) as well as other unlinked markers increased significantly in the first generation and then fluctuated around equilibrium frequencies for all six markers. However, when the mixed population was exposed to an infected blood meal every generation, allele frequencies at the QTL markers for resistance were not significantly changed. Small population size caused significant random fluctuations of allele frequencies at all marker loci. Consistent allele frequency changes in the QTL markers and other unlinked markers suggest that the reduced fitness in the resistant population has a genome-wide effect on the genetic makeup of the mixed population. Continuous exposure to parasites promoted the maintenance of alleles from the resistant Moyo-R strain in the mixed population. The results are discussed in relation to the proposed malaria control strategy through genetic disruption of vector competence.

Full Text

The Full Text of this article is available as a PDF (125.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Collins F. H., Sakai R. K., Vernick K. D., Paskewitz S., Seeley D. C., Miller L. H., Collins W. E., Campbell C. C., Gwadz R. W. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science. 1986 Oct 31;234(4776):607–610. doi: 10.1126/science.3532325. [DOI] [PubMed] [Google Scholar]
  2. Fellowes M. D., Kraaijeveld A. R., Godfray H. C. Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc Biol Sci. 1998 Aug 22;265(1405):1553–1558. doi: 10.1098/rspb.1998.0471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Freier J. E., Friedman S. Effect of host infection with Plasmodium gallinaceum on the reproductive capacity of Aedes aegypti. J Invertebr Pathol. 1976 Sep;28(2):161–166. doi: 10.1016/0022-2011(76)90117-8. [DOI] [PubMed] [Google Scholar]
  4. Guo S. W., Thompson E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992 Jun;48(2):361–372. [PubMed] [Google Scholar]
  5. Hacker C. S., Kilama W. L. The relationship between plasmodium gallinaceum density and the fecundity of Aedes aegypti. J Invertebr Pathol. 1974 Jan;23(1):101–105. doi: 10.1016/0022-2011(74)90079-2. [DOI] [PubMed] [Google Scholar]
  6. Hogg J. C., Hurd H. The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania. Parasitology. 1997 Apr;114(Pt 4):325–331. doi: 10.1017/s0031182096008542. [DOI] [PubMed] [Google Scholar]
  7. Jahan N., Hurd H. The effects of infection with Plasmodium yoelii nigeriensis on the reproductive fitness of Anopheles stephensi. Ann Trop Med Parasitol. 1997 Jun;91(4):365–369. doi: 10.1080/00034989760987. [DOI] [PubMed] [Google Scholar]
  8. James A. A., Beerntsen B. T., Capurro M. de L., Coates C. J., Coleman J., Jasinskiene N., Krettli A. U. Controlling malaria transmission with genetically-engineered, Plasmodium-resistant mosquitoes: milestones in a model system. Parassitologia. 1999 Sep;41(1-3):461–471. [PubMed] [Google Scholar]
  9. James A. A., Blackmer K., Racioppi J. V. A salivary gland-specific, maltase-like gene of the vector mosquito, Aedes aegypti. Gene. 1989 Jan 30;75(1):73–83. doi: 10.1016/0378-1119(89)90384-3. [DOI] [PubMed] [Google Scholar]
  10. Kilama W. L., Craig G. B., Jr Monofactorial inheritance of susceptibility to Plasmodium Gallinaceum in Aedes aegypti. Ann Trop Med Parasitol. 1969 Dec;63(4):419–432. doi: 10.1080/00034983.1969.11686645. [DOI] [PubMed] [Google Scholar]
  11. Kilama W. L. Distribution of a gene for susceptibility to Plasmodium gallinaceum in populations of Aedes aegypti (L.). J Parasitol. 1973 Oct;59(5):920–924. [PubMed] [Google Scholar]
  12. Michalakis Y., Hochberg M. E. Parasitic effects on host life-history traits: a review of recent studies. Parasite. 1994 Dec;1(4):291–294. doi: 10.1051/parasite/1994014291. [DOI] [PubMed] [Google Scholar]
  13. Morand S., Manning S. D., Woolhouse M. E. Parasite-host coevolution and geographic patterns of parasite infectivity and host susceptibility. Proc Biol Sci. 1996 Jan 22;263(1366):119–128. doi: 10.1098/rspb.1996.0019. [DOI] [PubMed] [Google Scholar]
  14. Moret Y., Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science. 2000 Nov 10;290(5494):1166–1168. doi: 10.1126/science.290.5494.1166. [DOI] [PubMed] [Google Scholar]
  15. doi: 10.1098/rspb.1999.0650. [DOI] [PMC free article] [Google Scholar]
  16. doi: 10.1098/rspb.1999.0659. [DOI] [PMC free article] [Google Scholar]
  17. Paul R. E., Packer M. J., Walmsley M., Lagog M., Ranford-Cartwright L. C., Paru R., Day K. P. Mating patterns in malaria parasite populations of Papua New Guinea. Science. 1995 Sep 22;269(5231):1709–1711. doi: 10.1126/science.7569897. [DOI] [PubMed] [Google Scholar]
  18. Renaud F., de Meeüs T. A simple model of host-parasite evolutionary relationships. Parasitism: compromise or conflict? J Theor Biol. 1991 Oct 7;152(3):319–327. doi: 10.1016/s0022-5193(05)80197-3. [DOI] [PubMed] [Google Scholar]
  19. Ribeiro J. M., Kidwell M. G. Transposable elements as population drive mechanisms: specification of critical parameter values. J Med Entomol. 1994 Jan;31(1):10–16. doi: 10.1093/jmedent/31.1.10. [DOI] [PubMed] [Google Scholar]
  20. Rigby Mark C., Hechinger Ryan F., Stevens Lori. Why should parasite resistance be costly? Trends Parasitol. 2002 Mar;18(3):116–120. doi: 10.1016/s1471-4922(01)02203-6. [DOI] [PubMed] [Google Scholar]
  21. Rousset F., Raymond M. Testing heterozygote excess and deficiency. Genetics. 1995 Aug;140(4):1413–1419. doi: 10.1093/genetics/140.4.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sasaki A. Host-parasite coevolution in a multilocus gene-for-gene system. Proc Biol Sci. 2000 Nov 7;267(1458):2183–2188. doi: 10.1098/rspb.2000.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Severson D. W., Thathy V., Mori A., Zhang Y., Christensen B. M. Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics. 1995 Apr;139(4):1711–1717. doi: 10.1093/genetics/139.4.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taylor K. A., Koros J. K., Nduati J., Copeland R. S., Collins F. H., Brandling-Bennett A. D. Plasmodium falciparum infection rates in Anopheles gambiae, An. arabiensis, and An. funestus in western Kenya. Am J Trop Med Hyg. 1990 Aug;43(2):124–129. doi: 10.4269/ajtmh.1990.43.124. [DOI] [PubMed] [Google Scholar]
  25. Thathy V., Severson D. W., Christensen B. M. Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum. J Parasitol. 1994 Oct;80(5):705–712. [PubMed] [Google Scholar]
  26. Turelli M., Hoffmann A. A. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol. 1999 May;8(2):243–255. doi: 10.1046/j.1365-2583.1999.820243.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES