Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):1087–1097. doi: 10.1093/genetics/164.3.1087

Molecular characterization of a family of tandemly repeated DNA sequences, TR-1, in heterochromatic knobs of maize and its relatives.

F C Hsu 1, C J Wang 1, C M Chen 1, H Y Hu 1, C C Chen 1
PMCID: PMC1462607  PMID: 12871917

Abstract

Two families of tandem repeats, 180-bp and TR-1, have been found in the knobs of maize. In this study, we isolated 59 clones belonging to the TR-1 family from maize and teosinte. Southern hybridization and sequence analysis revealed that members of this family are composed of three basic sequences, A (67 bp); B (184 bp) or its variants B' (184 bp), 2/3B (115 bp), 2/3B' (115 bp); and C (108 bp), which are arranged in various combinations to produce repeat units that are multiples of approximately 180 bp. The molecular structure of TR-1 elements suggests that: (1) the B component may evolve from the 180-bp knob repeat as a result of mutations during evolution; (2) B' may originate from B through lateral amplification accompanied by base-pair changes; (3) C plus A may be a single sequence that is added to B and B', probably via nonhomologous recombination; and (4) 69 bp at the 3' end of B or B', and the entire sequence of C can be removed from the elements by an unknown mechanism. Sequence comparisons showed partial homologies between TR-1 elements and two centromeric sequences (B repeats) of the supernumerary B chromosome. This result, together with the finding of other investigators that the B repeat is also fragmentarily homologous to the 180-bp repeat, suggests that the B repeat is derived from knob repeats in A chromosomes, which subsequently become structurally modified. Fluorescence in situ hybridization localized the B repeat to the B centromere and the 180-bp and TR-1 repeats to the proximal heterochromatin knob on the B chromosome.

Full Text

The Full Text of this article is available as a PDF (399.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfenito M. R., Birchler J. A. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993 Oct;135(2):589–597. doi: 10.1093/genetics/135.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananiev E. V., Phillips R. L., Rines H. W. A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10785–10790. doi: 10.1073/pnas.95.18.10785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ananiev E. V., Phillips R. L., Rines H. W. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics. 1998 Aug;149(4):2025–2037. doi: 10.1093/genetics/149.4.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckler E. S., 4th, Holtsford T. P. Zea systematics: ribosomal ITS evidence. Mol Biol Evol. 1996 Apr;13(4):612–622. doi: 10.1093/oxfordjournals.molbev.a025621. [DOI] [PubMed] [Google Scholar]
  5. Buckler E. S., 4th, Phelps-Durr T. L., Buckler C. S., Dawe R. K., Doebley J. F., Holtsford T. P. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics. 1999 Sep;153(1):415–426. doi: 10.1093/genetics/153.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C. C., Chen C. M., Yang J. T., Kao Y. Y. Localization of a repetitive DNA sequence to the primary constrictions of maize pachytene chromosomes. Chromosome Res. 1998 Apr;6(3):236–238. [PubMed] [Google Scholar]
  7. Dawe R. K., Reed L. M., Yu H. G., Muszynski M. G., Hiatt E. N. A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell. 1999 Jul;11(7):1227–1238. doi: 10.1105/tpc.11.7.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dennis E. S., Peacock W. J. Knob heterochromatin homology in maize and its relatives. J Mol Evol. 1984;20(3-4):341–350. doi: 10.1007/BF02104740. [DOI] [PubMed] [Google Scholar]
  9. Doebley J. George Beadle's other hypothesis: one-gene, one-trait. Genetics. 2001 Jun;158(2):487–493. doi: 10.1093/genetics/158.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gazdová B., Siroký J., Fajkus J., Brzobohatý B., Kenton A., Parokonny A., Heslop-Harrison J. S., Palme K., Bezdek M. Characterization of a new family of tobacco highly repetitive DNA, GRS, specific for the Nicotiana tomentosiformis genomic component. Chromosome Res. 1995 Jun;3(4):245–254. doi: 10.1007/BF00713050. [DOI] [PubMed] [Google Scholar]
  11. Gorbunova V., Levy A. A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 1997 Nov 15;25(22):4650–4657. doi: 10.1093/nar/25.22.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grellet F., Delcasso D., Panabieres F., Delseny M. Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol. 1986 Feb 20;187(4):495–507. doi: 10.1016/0022-2836(86)90329-3. [DOI] [PubMed] [Google Scholar]
  13. Hiatt Evelyn N., Kentner Edward K., Dawe R. Kelly. Independently regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell. 2002 Feb;14(2):407–420. doi: 10.1105/tpc.010373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ingham L. D., Hanna W. W., Baier J. W., Hannah L. C. Origin of the main class of repetitive DNA within selected Pennisetum species. Mol Gen Genet. 1993 Apr;238(3):350–356. doi: 10.1007/BF00291993. [DOI] [PubMed] [Google Scholar]
  15. Kaszás E., Birchler J. A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics. 1998 Dec;150(4):1683–1692. doi: 10.1093/genetics/150.4.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaszás E., Birchler J. A. Misdivision analysis of centromere structure in maize. EMBO J. 1996 Oct 1;15(19):5246–5255. [PMC free article] [PubMed] [Google Scholar]
  17. Langdon T., Seago C., Jones R. N., Ougham H., Thomas H., Forster J. W., Jenkins G. De novo evolution of satellite DNA on the rye B chromosome. Genetics. 2000 Feb;154(2):869–884. doi: 10.1093/genetics/154.2.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Longley A E. Abnormal Segregation during Megasporogenesis in Maize. Genetics. 1945 Jan;30(1):100–113. doi: 10.1093/genetics/30.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Page B. T., Wanous M. K., Birchler J. A. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics. 2001 Sep;159(1):291–302. doi: 10.1093/genetics/159.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peacock W. J., Dennis E. S., Rhoades M. M., Pryor A. J. Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4490–4494. doi: 10.1073/pnas.78.7.4490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Platero J. S., Ahmad K., Henikoff S. A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol Cell. 1999 Dec;4(6):995–1004. doi: 10.1016/s1097-2765(00)80228-2. [DOI] [PubMed] [Google Scholar]
  22. Pryor A., Faulkner K., Rhoades M. M., Peacock W. J. Asynchronous replication of heterochromatin in maize. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6705–6709. doi: 10.1073/pnas.77.11.6705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pâques F., Leung W. Y., Haber J. E. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol Cell Biol. 1998 Apr;18(4):2045–2054. doi: 10.1128/mcb.18.4.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rhoades M M. Preferential Segregation in Maize. Genetics. 1942 Jul;27(4):395–407. doi: 10.1093/genetics/27.4.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rhoades M. M., Dempsey E. The Effect of Abnormal Chromosome 10 on Preferential Segregation and Crossing over in Maize. Genetics. 1966 May;53(5):989–1020. doi: 10.1093/genetics/53.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stark E. A., Connerton I., Bennett S. T., Barnes S. R., Parker J. S., Forster J. W. Molecular analysis of the structure of the maize B-chromosome. Chromosome Res. 1996 Jan;4(1):15–23. doi: 10.1007/BF02254939. [DOI] [PubMed] [Google Scholar]
  27. Williams B. C., Murphy T. D., Goldberg M. L., Karpen G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet. 1998 Jan;18(1):30–37. doi: 10.1038/ng0198-30. [DOI] [PubMed] [Google Scholar]
  28. Yu H. G., Hiatt E. N., Chan A., Sweeney M., Dawe R. K. Neocentromere-mediated chromosome movement in maize. J Cell Biol. 1997 Nov 17;139(4):831–840. doi: 10.1083/jcb.139.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhong Cathy Xiaoyan, Marshall Joshua B., Topp Christopher, Mroczek Rebecca, Kato Akio, Nagaki Kiyotaka, Birchler James A., Jiang Jiming, Dawe R. Kelly. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002 Nov;14(11):2825–2836. doi: 10.1105/tpc.006106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. du Sart D., Cancilla M. R., Earle E., Mao J. I., Saffery R., Tainton K. M., Kalitsis P., Martyn J., Barry A. E., Choo K. H. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet. 1997 Jun;16(2):144–153. doi: 10.1038/ng0697-144. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES