Abstract
Yeast strains harboring mutations in genes required for telomerase function (TLC1 and the EST genes) exhibit progressive shortening of telomeric DNA and replicative senescence. A minority of cells withstands loss of telomerase through RAD52-dependent amplification of telomeric and subtelomeric sequences; such survivors are now capable of long-term propagation with telomeres maintained by recombination rather than by telomerase. Here we report that simultaneous expression in haploid cells of both MATa and MATalpha information suppresses the senescence of telomerase-deficient mutants, with suppression occurring via the RAD52-dependent survivor pathway(s). Such suppression can be mimicked by deletion of SIR1-SIR4, genes that function in transcriptional silencing of several loci including the silent mating-type loci. Furthermore, telomerase-defective diploid strains that express only MATa or MATalpha information senesce at a faster rate than telomerase-defective diploids that are heterozygous at the MAT locus. This suggests that the RAD52-dependent pathway(s) for telomere maintenance respond to changes in the levels of recombination, a process regulated in part by the hierarchy of gene control that includes MAT regulation. We propose that cell-type-specific regulation of recombination at human telomeres may similarly contribute to the tissue-specific patterns of disease found in telomerase-deficient tumors.
Full Text
The Full Text of this article is available as a PDF (414.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aparicio O. M., Billington B. L., Gottschling D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991 Sep 20;66(6):1279–1287. doi: 10.1016/0092-8674(91)90049-5. [DOI] [PubMed] [Google Scholar]
- Baudin A., Ozier-Kalogeropoulos O., Denouel A., Lacroute F., Cullin C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993 Jul 11;21(14):3329–3330. doi: 10.1093/nar/21.14.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett C. B., Snipe J. R., Westmoreland J. W., Resnick M. A. SIR functions are required for the toleration of an unrepaired double-strand break in a dispensable yeast chromosome. Mol Cell Biol. 2001 Aug;21(16):5359–5373. doi: 10.1128/MCB.21.16.5359-5373.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeke J. D., Trueheart J., Natsoulis G., Fink G. R. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. doi: 10.1016/0076-6879(87)54076-9. [DOI] [PubMed] [Google Scholar]
- Bryan T. M., Englezou A., Dalla-Pozza L., Dunham M. A., Reddel R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997 Nov;3(11):1271–1274. doi: 10.1038/nm1197-1271. [DOI] [PubMed] [Google Scholar]
- Bryan T. M., Englezou A., Gupta J., Bacchetti S., Reddel R. R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995 Sep 1;14(17):4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clikeman J. A., Khalsa G. J., Barton S. L., Nickoloff J. A. Homologous recombinational repair of double-strand breaks in yeast is enhanced by MAT heterozygosity through yKU-dependent and -independent mechanisms. Genetics. 2001 Feb;157(2):579–589. doi: 10.1093/genetics/157.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Counter C. M., Meyerson M., Eaton E. N., Weinberg R. A. The catalytic subunit of yeast telomerase. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9202–9207. doi: 10.1073/pnas.94.17.9202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunham M. A., Neumann A. A., Fasching C. L., Reddel R. R. Telomere maintenance by recombination in human cells. Nat Genet. 2000 Dec;26(4):447–450. doi: 10.1038/82586. [DOI] [PubMed] [Google Scholar]
- European Society of Human Genetics' PPPC Genetic information and testing in insurance and employment: technical, social and ethical issues. Eur J Hum Genet. 2003 Dec;11(12):909–910. doi: 10.1038/sj.ejhg.5201104. [DOI] [PubMed] [Google Scholar]
- Evans S. K., Lundblad V. Est1 and Cdc13 as comediators of telomerase access. Science. 1999 Oct 1;286(5437):117–120. doi: 10.1126/science.286.5437.117. [DOI] [PubMed] [Google Scholar]
- Flint J., Bates G. P., Clark K., Dorman A., Willingham D., Roe B. A., Micklem G., Higgs D. R., Louis E. J. Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum Mol Genet. 1997 Aug;6(8):1305–1313. doi: 10.1093/hmg/6.8.1305. [DOI] [PubMed] [Google Scholar]
- Fourel G., Revardel E., Koering C. E., Gilson E. Cohabitation of insulators and silencing elements in yeast subtelomeric regions. EMBO J. 1999 May 4;18(9):2522–2537. doi: 10.1093/emboj/18.9.2522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank-Vaillant M., Marcand S. NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the ligase IV pathway. Genes Dev. 2001 Nov 15;15(22):3005–3012. doi: 10.1101/gad.206801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galitski T., Saldanha A. J., Styles C. A., Lander E. S., Fink G. R. Ploidy regulation of gene expression. Science. 1999 Jul 9;285(5425):251–254. doi: 10.1126/science.285.5425.251. [DOI] [PubMed] [Google Scholar]
- Gotta M., Strahl-Bolsinger S., Renauld H., Laroche T., Kennedy B. K., Grunstein M., Gasser S. M. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 1997 Jun 2;16(11):3243–3255. doi: 10.1093/emboj/16.11.3243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hackett J. A., Feldser D. M., Greider C. W. Telomere dysfunction increases mutation rate and genomic instability. Cell. 2001 Aug 10;106(3):275–286. doi: 10.1016/s0092-8674(01)00457-3. [DOI] [PubMed] [Google Scholar]
- Hecht A., Strahl-Bolsinger S., Grunstein M. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature. 1996 Sep 5;383(6595):92–96. doi: 10.1038/383092a0. [DOI] [PubMed] [Google Scholar]
- Henson Jeremy D., Neumann Axel A., Yeager Thomas R., Reddel Roger R. Alternative lengthening of telomeres in mammalian cells. Oncogene. 2002 Jan 21;21(4):598–610. doi: 10.1038/sj.onc.1205058. [DOI] [PubMed] [Google Scholar]
- Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
- Kegel A., Sjöstrand J. O., Aström S. U. Nej1p, a cell type-specific regulator of nonhomologous end joining in yeast. Curr Biol. 2001 Oct 16;11(20):1611–1617. doi: 10.1016/s0960-9822(01)00488-2. [DOI] [PubMed] [Google Scholar]
- Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
- Lee S. E., Pâques F., Sylvan J., Haber J. E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr Biol. 1999 Jul 15;9(14):767–770. doi: 10.1016/s0960-9822(99)80339-x. [DOI] [PubMed] [Google Scholar]
- Lendvay T. S., Morris D. K., Sah J., Balasubramanian B., Lundblad V. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics. 1996 Dec;144(4):1399–1412. doi: 10.1093/genetics/144.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingner J., Hughes T. R., Shevchenko A., Mann M., Lundblad V., Cech T. R. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science. 1997 Apr 25;276(5312):561–567. doi: 10.1126/science.276.5312.561. [DOI] [PubMed] [Google Scholar]
- Louis E. J., Naumova E. S., Lee A., Naumov G., Haber J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 1994 Mar;136(3):789–802. doi: 10.1093/genetics/136.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louis E. J. The chromosome ends of Saccharomyces cerevisiae. Yeast. 1995 Dec;11(16):1553–1573. doi: 10.1002/yea.320111604. [DOI] [PubMed] [Google Scholar]
- Lovett S. T., Mortimer R. K. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics. 1987 Aug;116(4):547–553. doi: 10.1093/genetics/116.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundblad Victoria. Telomere maintenance without telomerase. Oncogene. 2002 Jan 21;21(4):522–531. doi: 10.1038/sj.onc.1205079. [DOI] [PubMed] [Google Scholar]
- Marshall M., Mahoney D., Rose A., Hicks J. B., Broach J. R. Functional domains of SIR4, a gene required for position effect regulation in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Dec;7(12):4441–4452. doi: 10.1128/mcb.7.12.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McEachern M. J., Blackburn E. H. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 1996 Jul 15;10(14):1822–1834. doi: 10.1101/gad.10.14.1822. [DOI] [PubMed] [Google Scholar]
- McEachern M. J., Iyer S. Short telomeres in yeast are highly recombinogenic. Mol Cell. 2001 Apr;7(4):695–704. doi: 10.1016/s1097-2765(01)00215-5. [DOI] [PubMed] [Google Scholar]
- Morgan Elizabeth A., Shah Naseem, Symington Lorraine S. The requirement for ATP hydrolysis by Saccharomyces cerevisiae Rad51 is bypassed by mating-type heterozygosity or RAD54 in high copy. Mol Cell Biol. 2002 Sep;22(18):6336–6343. doi: 10.1128/MCB.22.18.6336-6343.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris D. K., Lundblad V. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol. 1997 Dec 1;7(12):969–976. doi: 10.1016/s0960-9822(06)00416-7. [DOI] [PubMed] [Google Scholar]
- Nakamura T. M., Cooper J. P., Cech T. R. Two modes of survival of fission yeast without telomerase. Science. 1998 Oct 16;282(5388):493–496. doi: 10.1126/science.282.5388.493. [DOI] [PubMed] [Google Scholar]
- Nugent C. I., Hughes T. R., Lue N. F., Lundblad V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996 Oct 11;274(5285):249–252. doi: 10.1126/science.274.5285.249. [DOI] [PubMed] [Google Scholar]
- Nugent C. I., Lundblad V. The telomerase reverse transcriptase: components and regulation. Genes Dev. 1998 Apr 15;12(8):1073–1085. doi: 10.1101/gad.12.8.1073. [DOI] [PubMed] [Google Scholar]
- Ooi S. L., Shoemaker D. D., Boeke J. D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science. 2001 Nov 8;294(5551):2552–2556. doi: 10.1126/science.1065672. [DOI] [PubMed] [Google Scholar]
- Palladino F., Laroche T., Gilson E., Axelrod A., Pillus L., Gasser S. M. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell. 1993 Nov 5;75(3):543–555. doi: 10.1016/0092-8674(93)90388-7. [DOI] [PubMed] [Google Scholar]
- Pennock E., Buckley K., Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001 Feb 9;104(3):387–396. doi: 10.1016/s0092-8674(01)00226-4. [DOI] [PubMed] [Google Scholar]
- Primig M., Williams R. M., Winzeler E. A., Tevzadze G. G., Conway A. R., Hwang S. Y., Davis R. W., Esposito R. E. The core meiotic transcriptome in budding yeasts. Nat Genet. 2000 Dec;26(4):415–423. doi: 10.1038/82539. [DOI] [PubMed] [Google Scholar]
- Pryde F. E., Gorham H. C., Louis E. J. Chromosome ends: all the same under their caps. Curr Opin Genet Dev. 1997 Dec;7(6):822–828. doi: 10.1016/s0959-437x(97)80046-9. [DOI] [PubMed] [Google Scholar]
- Pryde F. E., Louis E. J. Limitations of silencing at native yeast telomeres. EMBO J. 1999 May 4;18(9):2538–2550. doi: 10.1093/emboj/18.9.2538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizki A., Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature. 2001 Jun 7;411(6838):713–716. doi: 10.1038/35079641. [DOI] [PubMed] [Google Scholar]
- Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
- Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
- Schild D. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics. 1995 May;140(1):115–127. doi: 10.1093/genetics/140.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shampay J., Szostak J. W., Blackburn E. H. DNA sequences of telomeres maintained in yeast. Nature. 1984 Jul 12;310(5973):154–157. doi: 10.1038/310154a0. [DOI] [PubMed] [Google Scholar]
- Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer M. S., Gottschling D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science. 1994 Oct 21;266(5184):404–409. doi: 10.1126/science.7545955. [DOI] [PubMed] [Google Scholar]
- Stone E. M., Swanson M. J., Romeo A. M., Hicks J. B., Sternglanz R. The SIR1 gene of Saccharomyces cerevisiae and its role as an extragenic suppressor of several mating-defective mutants. Mol Cell Biol. 1991 Apr;11(4):2253–2262. doi: 10.1128/mcb.11.4.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strahl-Bolsinger S., Hecht A., Luo K., Grunstein M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 1997 Jan 1;11(1):83–93. doi: 10.1101/gad.11.1.83. [DOI] [PubMed] [Google Scholar]
- Tham Wai-Hong, Zakian Virginia A. Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene. 2002 Jan 21;21(4):512–521. doi: 10.1038/sj.onc.1205078. [DOI] [PubMed] [Google Scholar]
- Valencia M., Bentele M., Vaze M. B., Herrmann G., Kraus E., Lee S. E., Schär P., Haber J. E. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature. 2001 Dec 6;414(6864):666–669. doi: 10.1038/414666a. [DOI] [PubMed] [Google Scholar]
- Walmsley R. W., Chan C. S., Tye B. K., Petes T. D. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature. 1984 Jul 12;310(5973):157–160. doi: 10.1038/310157a0. [DOI] [PubMed] [Google Scholar]
- Yan Y. X., Schiestl R. H., Prakash L. Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group. Curr Genet. 1995 Jun;28(1):12–18. doi: 10.1007/BF00311876. [DOI] [PubMed] [Google Scholar]