Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):1027–1034. doi: 10.1093/genetics/164.3.1027

The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster.

K Tracy Reynolds 1, Linda J Thomson 1, Ary A Hoffmann 1
PMCID: PMC1462616  PMID: 12871912

Abstract

Because of their obligate endosymbiotic nature, Wolbachia strains by necessity are defined by their phenotypic effects upon their host. Nevertheless, studies on the influence of host background and environmental conditions upon the manifestation of Wolbachia effects are relatively uncommon. Here we examine the behavior of the overreplicating Wolbachia strain popcorn in four different Drosophila melanogaster backgrounds at two temperatures. Unlike other strains of Wolbachia in Drosophila, popcorn has a major fitness impact upon its hosts. The rapid proliferation of popcorn causes cells to rupture, resulting in the premature death of adult hosts. Apart from this effect, we found that popcorn delayed development time, and host background influenced both this trait and the rate of mortality associated with infection. Temperature influenced the impact of popcorn upon host mortality, with no reduction in life span occurring in flies reared at 19 degrees. No effect upon fecundity was found. Contrary to earlier reports, popcorn induced high levels of incompatibility when young males were used in tests, and CI levels declined rapidly with male age. The population dynamics of popcorn-type infections will therefore depend on environmental temperature, host background, and the age structure of the population.

Full Text

The Full Text of this article is available as a PDF (120.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bordenstein S. R., Werren J. H. Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia. Genetics. 1998 Apr;148(4):1833–1844. doi: 10.1093/genetics/148.4.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyle L., O'Neill S. L., Robertson H. M., Karr T. L. Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science. 1993 Jun 18;260(5115):1796–1799. doi: 10.1126/science.8511587. [DOI] [PubMed] [Google Scholar]
  3. Fujii Y., Kageyama D., Hoshizaki S., Ishikawa H., Sasaki T. Transfection of Wolbachia in Lepidoptera: the feminizer of the adzuki bean borer Ostrinia scapulalis causes male killing in the Mediterranean flour moth Ephestia kuehniella. Proc Biol Sci. 2001 Apr 22;268(1469):855–859. doi: 10.1098/rspb.2001.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoffmann A. A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998 Jan;148(1):221–231. doi: 10.1093/genetics/148.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hoffmann A. A., Turelli M., Harshman L. G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. doi: 10.1093/genetics/126.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holden P. R., Jones P., Brookfield J. F. Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet Res. 1993 Aug;62(1):23–29. doi: 10.1017/s0016672300031529. [DOI] [PubMed] [Google Scholar]
  7. Jeyaprakash A., Hoy M. A. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol. 2000 Aug;9(4):393–405. doi: 10.1046/j.1365-2583.2000.00203.x. [DOI] [PubMed] [Google Scholar]
  8. Karr T. L., Yang W., Feder M. E. Overcoming cytoplasmic incompatibility in Drosophila. Proc Biol Sci. 1998 Mar 7;265(1394):391–395. doi: 10.1098/rspb.1998.0307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McGraw E. A., Merritt D. J., Droller J. N., O'Neill S. L. Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2918–2923. doi: 10.1073/pnas.052466499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McGraw E. A., Merritt D. J., Droller J. N., O'Neill S. L. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc Biol Sci. 2001 Dec 22;268(1485):2565–2570. doi: 10.1098/rspb.2001.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Min K. T., Benzer S. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10792–10796. doi: 10.1073/pnas.94.20.10792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Olsen K., Reynolds K. T., Hoffmann A. A. A field cage test of the effects of the endosymbiont Wolbachia on Drosophila melanogaster. Heredity (Edinb) 2001 Jun;86(Pt 6):731–737. doi: 10.1046/j.1365-2540.2001.00892.x. [DOI] [PubMed] [Google Scholar]
  14. doi: 10.1098/rspb.1998.0455. [DOI] [PMC free article] [Google Scholar]
  15. Poinsot D., Bourtzis K., Markakis G., Savakis C., Merçot H. Wolbachia transfer from Drosophila melanogaster into D. simulans: Host effect and cytoplasmic incompatibility relationships. Genetics. 1998 Sep;150(1):227–237. doi: 10.1093/genetics/150.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reynolds K. Tracy, Hoffmann Ary A. Male age, host effects and the weak expression or non-expression of cytoplasmic incompatibility in Drosophila strains infected by maternally transmitted Wolbachia. Genet Res. 2002 Oct;80(2):79–87. doi: 10.1017/s0016672302005827. [DOI] [PubMed] [Google Scholar]
  17. Turelli M., Hoffmann A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995 Aug;140(4):1319–1338. doi: 10.1093/genetics/140.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Voelker R. A., Gibson W., Graves J. P., Sterling J. F., Eisenberg M. T. The Drosophila suppressor of sable gene encodes a polypeptide with regions similar to those of RNA-binding proteins. Mol Cell Biol. 1991 Feb;11(2):894–905. doi: 10.1128/mcb.11.2.894. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES