Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):1139–1160. doi: 10.1093/genetics/164.3.1139

Estimation of population growth or decline in genetically monitored populations.

Mark A Beaumont 1
PMCID: PMC1462617  PMID: 12871921

Abstract

This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.

Full Text

The Full Text of this article is available as a PDF (248.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. C., Williamson E. G., Thompson E. A. Monte Carlo evaluation of the likelihood for N(e) from temporally spaced samples. Genetics. 2000 Dec;156(4):2109–2118. doi: 10.1093/genetics/156.4.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Austerlitz F., Heyer E. Social transmission of reproductive behavior increases frequency of inherited disorders in a young-expanding population. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15140–15144. doi: 10.1073/pnas.95.25.15140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beaumont M. A. Detecting population expansion and decline using microsatellites. Genetics. 1999 Dec;153(4):2013–2029. doi: 10.1093/genetics/153.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beerli P., Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A. 2001 Apr 3;98(8):4563–4568. doi: 10.1073/pnas.081068098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berthier Pierre, Beaumont Mark A., Cornuet Jean-Marie, Luikart Gordon. Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics. 2002 Feb;160(2):741–751. doi: 10.1093/genetics/160.2.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
  7. Chikhi L., Bruford M. W., Beaumont M. A. Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo. Genetics. 2001 Jul;158(3):1347–1362. doi: 10.1093/genetics/158.3.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donnelly P., Tavaré S. Coalescents and genealogical structure under neutrality. Annu Rev Genet. 1995;29:401–421. doi: 10.1146/annurev.ge.29.120195.002153. [DOI] [PubMed] [Google Scholar]
  9. Drummond Alexei J., Nicholls Geoff K., Rodrigo Allen G., Solomon Wiremu. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics. 2002 Jul;161(3):1307–1320. doi: 10.1093/genetics/161.3.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fearnhead P., Donnelly P. Estimating recombination rates from population genetic data. Genetics. 2001 Nov;159(3):1299–1318. doi: 10.1093/genetics/159.3.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frankham R. Conservation genetics. Annu Rev Genet. 1995;29:305–327. doi: 10.1146/annurev.ge.29.120195.001513. [DOI] [PubMed] [Google Scholar]
  12. Fu Y. X. Estimating mutation rate and generation time from longitudinal samples of DNA sequences. Mol Biol Evol. 2001 Apr;18(4):620–626. doi: 10.1093/oxfordjournals.molbev.a003842. [DOI] [PubMed] [Google Scholar]
  13. Griffiths R. C., Tavaré S. Sampling theory for neutral alleles in a varying environment. Philos Trans R Soc Lond B Biol Sci. 1994 Jun 29;344(1310):403–410. doi: 10.1098/rstb.1994.0079. [DOI] [PubMed] [Google Scholar]
  14. Groombridge J. J., Jones C. G., Bruford M. W., Nichols R. A. 'Ghost' alleles of the Mauritius kestrel. Nature. 2000 Feb 10;403(6770):616–616. doi: 10.1038/35001148. [DOI] [PubMed] [Google Scholar]
  15. Kuhner M. K., Yamato J., Felsenstein J. Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics. 1995 Aug;140(4):1421–1430. doi: 10.1093/genetics/140.4.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Langley C. H., Smith D. B., Johnson F. M. Analysis of linkage disequilibria between allozyme loci in natural populations of Drosophila melanogaster. Genet Res. 1978 Nov;32(3):215–229. doi: 10.1017/s0016672300018711. [DOI] [PubMed] [Google Scholar]
  17. Laurie-Ahlberg C. C., Weir B. S. Allozymic Variation and Linkage Disequilibrium in Some Laboratory Populations of DROSOPHILA MELANOGASTER. Genetics. 1979 Aug;92(4):1295–1314. doi: 10.1093/genetics/92.4.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewontin R. C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973 May;74(1):175–195. doi: 10.1093/genetics/74.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luikart G., Cornuet J. M. Estimating the effective number of breeders from heterozygote excess in progeny. Genetics. 1999 Mar;151(3):1211–1216. doi: 10.1093/genetics/151.3.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Miller L. M., Kapuscinski A. R. Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population. Genetics. 1997 Nov;147(3):1249–1258. doi: 10.1093/genetics/147.3.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981 Jul;98(3):625–640. doi: 10.1093/genetics/98.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nichols R. A., Bruford M. W., Groombridge J. J. Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Mol Ecol. 2001 Mar;10(3):593–602. doi: 10.1046/j.1365-294x.2001.01204.x. [DOI] [PubMed] [Google Scholar]
  23. Nielsen R., Wakeley J. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics. 2001 Jun;158(2):885–896. doi: 10.1093/genetics/158.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nordborg M. Structured coalescent processes on different time scales. Genetics. 1997 Aug;146(4):1501–1514. doi: 10.1093/genetics/146.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. doi: 10.1098/rspb.1999.0918. [DOI] [PMC free article] [Google Scholar]
  26. Pollak E. A new method for estimating the effective population size from allele frequency changes. Genetics. 1983 Jul;104(3):531–548. doi: 10.1093/genetics/104.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pritchard J. K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000 Jun;155(2):945–959. doi: 10.1093/genetics/155.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rodrigo A. G., Shpaer E. G., Delwart E. L., Iversen A. K., Gallo M. V., Brojatsch J., Hirsch M. S., Walker B. D., Mullins J. I. Coalescent estimates of HIV-1 generation time in vivo. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2187–2191. doi: 10.1073/pnas.96.5.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saccheri I. J., Wilson I. J., Nichols R. A., Bruford M. W., Brakefield P. M. Inbreeding of bottlenecked butterfly populations. Estimation using the likelihood of changes in marker allele frequencies. Genetics. 1999 Mar;151(3):1053–1063. doi: 10.1093/genetics/151.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Storz Jay F., Beaumont Mark A. Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution. 2002 Jan;56(1):154–166. doi: 10.1111/j.0014-3820.2002.tb00857.x. [DOI] [PubMed] [Google Scholar]
  31. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  32. Wakeley J., Aliacar N. Gene genealogies in a metapopulation. Genetics. 2001 Oct;159(2):893–905. doi: 10.1093/genetics/159.2.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wakeley J. Nonequilibrium migration in human history. Genetics. 1999 Dec;153(4):1863–1871. doi: 10.1093/genetics/153.4.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang J. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res. 2001 Dec;78(3):243–257. doi: 10.1017/s0016672301005286. [DOI] [PubMed] [Google Scholar]
  35. Wang Jinliang, Whitlock Michael C. Estimating effective population size and migration rates from genetic samples over space and time. Genetics. 2003 Jan;163(1):429–446. doi: 10.1093/genetics/163.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Waples R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989 Feb;121(2):379–391. doi: 10.1093/genetics/121.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Williamson E. G., Slatkin M. Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics. 1999 Jun;152(2):755–761. doi: 10.1093/genetics/152.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wilson I. J., Balding D. J. Genealogical inference from microsatellite data. Genetics. 1998 Sep;150(1):499–510. doi: 10.1093/genetics/150.1.499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES