Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):843–854. doi: 10.1093/genetics/164.3.843

The evolution of mutator genes in bacterial populations: the roles of environmental change and timing.

Mark M Tanaka 1, Carl T Bergstrom 1, Bruce R Levin 1
PMCID: PMC1462624  PMID: 12871898

Abstract

Recent studies have found high frequencies of bacteria with increased genomic rates of mutation in both clinical and laboratory populations. These observations may seem surprising in light of earlier experimental and theoretical studies. Mutator genes (genes that elevate the genomic mutation rate) are likely to induce deleterious mutations and thus suffer an indirect selective disadvantage; at the same time, bacteria carrying them can increase in frequency only by generating beneficial mutations at other loci. When clones carrying mutator genes are rare, however, these beneficial mutations are far more likely to arise in members of the much larger nonmutator population. How then can mutators become prevalent? To address this question, we develop a model of the population dynamics of bacteria confronted with ever-changing environments. Using analytical and simulation procedures, we explore the process by which initially rare mutator alleles can rise in frequency. We demonstrate that subsequent to a shift in environmental conditions, there will be relatively long periods of time during which the mutator subpopulation can produce a beneficial mutation before the ancestral subpopulations are eliminated. If the beneficial mutation arises early enough, the overall frequency of mutators will climb to a point higher than when the process began. The probability of producing a subsequent beneficial mutation will then also increase. In this manner, mutators can increase in frequency over successive selective sweeps. We discuss the implications and predictions of these theoretical results in relation to antibiotic resistance and the evolution of mutation rates.

Full Text

The Full Text of this article is available as a PDF (143.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenberg L., Feldman M. W. Selection, generalized transmission and the evolution of modifier genes. I. The reduction principle. Genetics. 1987 Nov;117(3):559–572. doi: 10.1093/genetics/117.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson D. I., Hughes D. Muller's ratchet decreases fitness of a DNA-based microbe. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):906–907. doi: 10.1073/pnas.93.2.906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arjan J. A., Visser M., Zeyl C. W., Gerrish P. J., Blanchard J. L., Lenski R. E. Diminishing returns from mutation supply rate in asexual populations. Science. 1999 Jan 15;283(5400):404–406. doi: 10.1126/science.283.5400.404. [DOI] [PubMed] [Google Scholar]
  4. Bergstrom C. T., Lipsitch M., Levin B. R. Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics. 2000 Aug;155(4):1505–1519. doi: 10.1093/genetics/155.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Björkholm B., Sjölund M., Falk P. G., Berg O. G., Engstrand L., Andersson D. I. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci U S A. 2001 Nov 20;98(25):14607–14612. doi: 10.1073/pnas.241517298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. B., Alifano P. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell. 1999 Apr;3(4):435–445. doi: 10.1016/s1097-2765(00)80471-2. [DOI] [PubMed] [Google Scholar]
  7. Chao L., Vargas C., Spear B. B., Cox E. C. Transposable elements as mutator genes in evolution. Nature. 1983 Jun 16;303(5918):633–635. doi: 10.1038/303633a0. [DOI] [PubMed] [Google Scholar]
  8. Cox E. C., Gibson T. C. Selection for high mutation rates in chemostats. Genetics. 1974 Jun;77(2):169–184. doi: 10.1093/genetics/77.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Field D., Magnasco M. O., Moxon E. R., Metzgar D., Tanaka M. M., Wills C., Thaler D. S. Contingency loci, mutator alleles, and their interactions. Synergistic strategies for microbial evolution and adaptation in pathogenesis. Ann N Y Acad Sci. 1999 May 18;870:378–382. doi: 10.1111/j.1749-6632.1999.tb08907.x. [DOI] [PubMed] [Google Scholar]
  11. Funchain P., Yeung A., Stewart J. L., Lin R., Slupska M. M., Miller J. H. The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics. 2000 Mar;154(3):959–970. doi: 10.1093/genetics/154.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerrish P. J., Lenski R. E. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102-103(1-6):127–144. [PubMed] [Google Scholar]
  13. Gillespie J. H. Evolution of the mutation rate at a heterotic locus. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2452–2454. doi: 10.1073/pnas.78.4.2452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giraud A., Matic I., Tenaillon O., Clara A., Radman M., Fons M., Taddei F. Costs and benefits of high mutation rates: adaptive evolution of bacteria in the mouse gut. Science. 2001 Mar 30;291(5513):2606–2608. doi: 10.1126/science.1056421. [DOI] [PubMed] [Google Scholar]
  15. Johnson T. Beneficial mutations, hitchhiking and the evolution of mutation rates in sexual populations. Genetics. 1999 Apr;151(4):1621–1631. doi: 10.1093/genetics/151.4.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson T. The approach to mutation-selection balance in an infinite asexual population, and the evolution of mutation rates. Proc Biol Sci. 1999 Dec 7;266(1436):2389–2397. doi: 10.1098/rspb.1999.0936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson Toby, Gerrish Philip J. The fixation probability of a beneficial allele in a population dividing by binary fission. Genetica. 2002 Aug;115(3):283–287. doi: 10.1023/a:1020687416478. [DOI] [PubMed] [Google Scholar]
  18. LeClerc J. E., Li B., Payne W. L., Cebula T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science. 1996 Nov 15;274(5290):1208–1211. doi: 10.1126/science.274.5290.1208. [DOI] [PubMed] [Google Scholar]
  19. Levin B. R. Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1196):459–472. doi: 10.1098/rstb.1988.0059. [DOI] [PubMed] [Google Scholar]
  20. Levins R. Theory of fitness in a heterogeneous environment. VI. The adaptive significance of mutation. Genetics. 1967 May;56(1):163–178. doi: 10.1093/genetics/56.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liberman U., Feldman M. W. Modifiers of mutation rate: a general reduction principle. Theor Popul Biol. 1986 Aug;30(1):125–142. doi: 10.1016/0040-5809(86)90028-6. [DOI] [PubMed] [Google Scholar]
  22. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science. 1997 Sep 19;277(5333):1833–1834. doi: 10.1126/science.277.5333.1833. [DOI] [PubMed] [Google Scholar]
  23. Miller J. H. Mutators in Escherichia coli. Mutat Res. 1998 Dec 14;409(3):99–106. doi: 10.1016/s0921-8777(98)00049-4. [DOI] [PubMed] [Google Scholar]
  24. Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000 May 18;405(6784):299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  25. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000 May 19;288(5469):1251–1254. doi: 10.1126/science.288.5469.1251. [DOI] [PubMed] [Google Scholar]
  26. Orr H. A. The rate of adaptation in asexuals. Genetics. 2000 Jun;155(2):961–968. doi: 10.1093/genetics/155.2.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Otto S. P., Barton N. H. The evolution of recombination: removing the limits to natural selection. Genetics. 1997 Oct;147(2):879–906. doi: 10.1093/genetics/147.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sniegowski P. D., Gerrish P. J., Johnson T., Shaver A. The evolution of mutation rates: separating causes from consequences. Bioessays. 2000 Dec;22(12):1057–1066. doi: 10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  29. Sniegowski P. D., Gerrish P. J., Lenski R. E. Evolution of high mutation rates in experimental populations of E. coli. Nature. 1997 Jun 12;387(6634):703–705. doi: 10.1038/42701. [DOI] [PubMed] [Google Scholar]
  30. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997 Jun 12;387(6634):700–702. doi: 10.1038/42696. [DOI] [PubMed] [Google Scholar]
  31. Tenaillon O., Le Nagard H., Godelle B., Taddei F. Mutators and sex in bacteria: conflict between adaptive strategies. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10465–10470. doi: 10.1073/pnas.180063397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tenaillon O., Toupance B., Le Nagard H., Taddei F., Godelle B. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics. 1999 Jun;152(2):485–493. doi: 10.1093/genetics/152.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Travis J. M. J., Travis E. R. Mutator dynamics in fluctuating environments. Proc Biol Sci. 2002 Mar 22;269(1491):591–597. doi: 10.1098/rspb.2001.1902. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES