Abstract
Repeat-induced point mutation (RIP) in Neurospora results in inactivation of duplicated DNA sequences. RIP is thought to provide protection against foreign elements such as retrotransposons, only one of which has been found in N. crassa. To examine the role of RIP in nature, we have examined seven N. crassa strains, identified among 446 wild isolates scored for dominant suppression of RIP. The test system involved a small duplication that targets RIP to the easily scorable gene erg-3. We previously showed that RIP in a small duplication is suppressed if another, larger duplication is present in the cross, as expected if the large duplication competes for the RIP machinery. In two of the strains, RIP suppression was associated with a barren phenotype--a characteristic of Neurospora duplications that is thought to result in part from a gene-silencing process called meiotic silencing by unpaired DNA (MSUD). A suppressor of MSUD (Sad-1) was shown not to prevent known large duplications from impairing RIP. Single-gene duplications also can be barren but are too short to suppress RIP. RIP suppression in strains that were not barren showed inheritance that was either simple Mendelian or complex. Adding copies of the LINE-like retrotransposon Tad did not affect RIP efficiency.
Full Text
The Full Text of this article is available as a PDF (133.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson C., Tang Q., Kinsey J. A. Elimination of active tad elements during the sexual phase of the Neurospora crassa life cycle. Fungal Genet Biol. 2001 Jun;33(1):49–57. doi: 10.1006/fgbi.2001.1267. [DOI] [PubMed] [Google Scholar]
- Aramayo R., Metzenberg R. L. Meiotic transvection in fungi. Cell. 1996 Jul 12;86(1):103–113. doi: 10.1016/s0092-8674(00)80081-1. [DOI] [PubMed] [Google Scholar]
- Bhat A., Kasbekar D. P. Escape from repeat-induced point mutation of a gene-sized duplication in Neurospora crassa crosses that are heterozygous for a larger chromosome segment duplication. Genetics. 2001 Apr;157(4):1581–1590. doi: 10.1093/genetics/157.4.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis S. W., Rose M. E., Grindle M. Identification of a sterol mutant of Neurospora crassa deficient in delta 14,15-reductase activity. J Gen Microbiol. 1991 Nov;137(11):2627–2630. doi: 10.1099/00221287-137-11-2627. [DOI] [PubMed] [Google Scholar]
- Freitag Michael, Williams Rebecca L., Kothe Gregory O., Selker Eric U. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A. 2002 Jun 18;99(13):8802–8807. doi: 10.1073/pnas.132212899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsey J. A., Garrett-Engele P. W., Cambareri E. B., Selker E. U. The Neurospora transposon Tad is sensitive to repeat-induced point mutation (RIP). Genetics. 1994 Nov;138(3):657–664. doi: 10.1093/genetics/138.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsey J. A., Helber J. Isolation of a transposable element from Neurospora crassa. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1929–1933. doi: 10.1073/pnas.86.6.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsey J. A. Restricted distribution of the Tad transposon in strains of Neurospora. Curr Genet. 1989 Apr;15(4):271–275. doi: 10.1007/BF00447042. [DOI] [PubMed] [Google Scholar]
- Mautino M. R., Rosa A. L. Analysis of models involving enzymatic activities for the occurrence of C-->T transition mutations during repeat-induced point mutation (RIP) in Neurospora crassa. J Theor Biol. 1998 May 7;192(1):61–71. doi: 10.1006/jtbi.1997.0608. [DOI] [PubMed] [Google Scholar]
- Noubissi F. K., Aparna K., McCluskey K., Kasbekar D. P. Evidence for dominant suppression of repeat-induced point mutation (RIP) in crosses with the wild-isolated Neurospora crassa strains Sugartown and Adiopodoume-7. J Genet. 2001 Aug;80(2):55–61. doi: 10.1007/BF02728331. [DOI] [PubMed] [Google Scholar]
- Perkins D. D. Chromosome rearrangements in Neurospora and other filamentous fungi. Adv Genet. 1997;36:239–398. doi: 10.1016/s0065-2660(08)60311-9. [DOI] [PubMed] [Google Scholar]
- Perkins D. D., Kinsey J. A., Asch D. K., Frederick G. D. Chromosome rearrangements recovered following transformation of Neurospora crassa. Genetics. 1993 Jul;134(3):729–736. doi: 10.1093/genetics/134.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins D. D., Margolin B. S., Selker E. U., Haedo S. D. Occurrence of repeat induced point mutation in long segmental duplications of Neurospora. Genetics. 1997 Sep;147(1):125–136. doi: 10.1093/genetics/147.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prakash A., Kasbekar D. P. The sterol C-14 reductase encoded by the Neurospora crassa erg-3 gene: essential charged and polar residues identified by site-specific mutagenesis. Mol Genet Genomics. 2001 Oct 16;266(5):787–795. doi: 10.1007/s00438-001-0594-9. [DOI] [PubMed] [Google Scholar]
- Prakash A., Sengupta S., Aparna K., Kasbekar D. P. The erg-3 (sterol delta14,15-reductase) gene of Neurospora crassa: generation of null mutants by repeat-induced point mutation and complementation by proteins chimeric for human lamin B receptor sequences. Microbiology. 1999 Jun;145(Pt 6):1443–1451. doi: 10.1099/13500872-145-6-1443. [DOI] [PubMed] [Google Scholar]
- Selker E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613. doi: 10.1146/annurev.ge.24.120190.003051. [DOI] [PubMed] [Google Scholar]
- Shiu P. K., Raju N. B., Zickler D., Metzenberg R. L. Meiotic silencing by unpaired DNA. Cell. 2001 Dec 28;107(7):905–916. doi: 10.1016/s0092-8674(01)00609-2. [DOI] [PubMed] [Google Scholar]
- Shiu Patrick K. T., Metzenberg Robert L. Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics. 2002 Aug;161(4):1483–1495. doi: 10.1093/genetics/161.4.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith M. L., Yang C. J., Metzenberg R. L., Glass N. L. Escape from het-6 incompatibility in Neurospora crassa partial diploids involves preferential deletion within the ectopic segment. Genetics. 1996 Oct;144(2):523–531. doi: 10.1093/genetics/144.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]