Abstract
Maximum-likelihood and Bayesian (MCMC algorithm) estimates of the increase of the Wright-Malécot inbreeding coefficient, F(t), between two temporally spaced samples, were developed from the Dirichlet approximation of allelic frequency distribution (model MD) and from the admixture of the Dirichlet approximation and the probabilities of fixation and loss of alleles (model MDL). Their accuracy was tested using computer simulations in which F(t) = 10% or less. The maximum-likelihood method based on the model MDL was found to be the best estimate of F(t) provided that initial frequencies are known exactly. When founder frequencies are estimated from a limited set of founder animals, only the estimates based on the model MD can be used for the moment. In this case no method was found to be the best in all situations investigated. The likelihood and Bayesian approaches give better results than the classical F-statistics when markers exhibiting a low polymorphism (such as the SNP markers) are used. Concerning the estimations of the effective population size all the new estimates presented here were found to be better than the F-statistics classically used.
Full Text
The Full Text of this article is available as a PDF (251.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. C., Williamson E. G., Thompson E. A. Monte Carlo evaluation of the likelihood for N(e) from temporally spaced samples. Genetics. 2000 Dec;156(4):2109–2118. doi: 10.1093/genetics/156.4.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balding D. J., Nichols R. A. A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetica. 1995;96(1-2):3–12. doi: 10.1007/BF01441146. [DOI] [PubMed] [Google Scholar]
- Beaumont M. A. Detecting population expansion and decline using microsatellites. Genetics. 1999 Dec;153(4):2013–2029. doi: 10.1093/genetics/153.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chevalet C. The number of lines of descent and fixation probabilities of alleles in the pure genetic drift process: analytical approximations. Theor Popul Biol. 2000 Mar;57(2):167–175. doi: 10.1006/tpbi.1999.1440. [DOI] [PubMed] [Google Scholar]
- Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
- Excoffier L., Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol. 1995 Sep;12(5):921–927. doi: 10.1093/oxfordjournals.molbev.a040269. [DOI] [PubMed] [Google Scholar]
- Kantanen J., Olsaker I., Adalsteinsson S., Sandberg K., Eythorsdottir E., Pirhonen K., Holm L. E. Temporal changes in genetic variation of north European cattle breeds. Anim Genet. 1999 Feb;30(1):16–27. doi: 10.1046/j.1365-2052.1999.00379.x. [DOI] [PubMed] [Google Scholar]
- Kimura M. SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A CONTINUOUS MODEL. Proc Natl Acad Sci U S A. 1955 Mar 15;41(3):144–150. doi: 10.1073/pnas.41.3.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitada S., Hayashi T., Kishino H. Empirical Bayes procedure for estimating genetic distance between populations and effective population size. Genetics. 2000 Dec;156(4):2063–2079. doi: 10.1093/genetics/156.4.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laval G., Iannuccelli N., Legault C., Milan D., Groenen M. A., Giuffra E., Andersson L., Nissen P. H., Jørgensen C. B., Beeckmann P. Genetic diversity of eleven European pig breeds. Genet Sel Evol. 2000 Mar-Apr;32(2):187–203. doi: 10.1186/1297-9686-32-2-187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laval Guillaume, SanCristobal Magali, Chevalet Claude. Measuring genetic distances between breeds: use of some distances in various short term evolution models. Genet Sel Evol. 2002 Jul-Aug;34(4):481–507. doi: 10.1186/1297-9686-34-4-481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacHugh D. E., Shriver M. D., Loftus R. T., Cunningham P., Bradley D. G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics. 1997 Jul;146(3):1071–1086. doi: 10.1093/genetics/146.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moazami-Goudarzi K., Laloë D., Furet J. P., Grosclaude F. Analysis of genetic relationships between 10 cattle breeds with 17 microsatellites. Anim Genet. 1997 Oct;28(5):338–345. doi: 10.1111/j.1365-2052.1997.00176.x. [DOI] [PubMed] [Google Scholar]
- Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981 Jul;98(3):625–640. doi: 10.1093/genetics/98.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollak E. A new method for estimating the effective population size from allele frequency changes. Genetics. 1983 Jul;104(3):531–548. doi: 10.1093/genetics/104.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reynolds J., Weir B. S., Cockerham C. C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics. 1983 Nov;105(3):767–779. doi: 10.1093/genetics/105.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
- Vignal Alain, Milan Denis, SanCristobal Magali, Eggen André. A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol. 2002 May-Jun;34(3):275–305. doi: 10.1186/1297-9686-34-3-275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson I. J., Balding D. J. Genealogical inference from microsatellite data. Genetics. 1998 Sep;150(1):499–510. doi: 10.1093/genetics/150.1.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]