Skip to main content
Genetics logoLink to Genetics
. 2003 Jul;164(3):1071–1085. doi: 10.1093/genetics/164.3.1071

Deleterious mutations and the genetic variance of male fitness components in Mimulus guttatus.

John K Kelly 1
PMCID: PMC1462635  PMID: 12871916

Abstract

Deleterious mutations are relevant to a broad range of questions in genetics and evolutionary biology. I present an application of the "biometric method" for estimating mutational parameters for male fitness characters of the yellow monkeyflower, Mimulus guttatus. The biometric method rests on two critical assumptions. The first is that experimental inbreeding changes genotype frequencies without changing allele frequencies; i.e., there is no genetic purging during the experiment. I satisfy this condition by employing a breeding design in which the parents are randomly extracted, fully homozygous inbred lines. The second is that all genetic variation is attributable to deleterious mutations maintained in mutation-selection balance. I explicitly test this hypothesis using likelihood ratios. Of the three deleterious mutation models tested, the first two are rejected for all characters. The failure of these models is due to an excess of additive genetic variation relative to the expectation under mutation-selection balance. The third model is not rejected for either of two log-transformed male fitness traits. However, this model imposes only "weak conditions" and is not sufficiently detailed to provide estimates for mutational parameters. The implication is that, if biometric methods are going to yield useful parameter estimates, they will need to consider mutational models more complicated than those typically employed in experimental studies.

Full Text

The Full Text of this article is available as a PDF (190.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caballero A., Keightley P. D., Turelli M. Average dominance for polygenes: drawbacks of regression estimates. Genetics. 1997 Nov;147(3):1487–1490. doi: 10.1093/genetics/147.3.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carr David E., Eubanks Micky D. Inbreeding alters resistance to insect herbivory and host plant quality in Mimulus guttatus (Scrophulariaceae). Evolution. 2002 Jan;56(1):22–30. doi: 10.1111/j.0014-3820.2002.tb00846.x. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cockerham C. C., Weir B. S. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics. 1984 Mar;40(1):157–164. [PubMed] [Google Scholar]
  5. Deng H. W. Characterization of deleterious mutations in outcrossing populations. Genetics. 1998 Oct;150(2):945–956. doi: 10.1093/genetics/150.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deng H. W., Lynch M. Estimation of deleterious-mutation parameters in natural populations. Genetics. 1996 Sep;144(1):349–360. doi: 10.1093/genetics/144.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deng H. W., Lynch M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics. 1997 Sep;147(1):147–155. doi: 10.1093/genetics/147.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deng Hong-Wen, Gao Guimin, Li Jin-Long. Estimation of deleterious genomic mutation parameters in natural populations by accounting for variable mutation effects across loci. Genetics. 2002 Nov;162(3):1487–1500. doi: 10.1093/genetics/162.3.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eyre-Walker A., Keightley P. D. High genomic deleterious mutation rates in hominids. Nature. 1999 Jan 28;397(6717):344–347. doi: 10.1038/16915. [DOI] [PubMed] [Google Scholar]
  10. HARRIS D. L. GENOTYPIC COVARIANCES BETWEEN INBRED RELATIVES. Genetics. 1964 Dec;50:1319–1348. doi: 10.1093/genetics/50.6.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann A. A., Hallas R., Sinclair C., Partridge L. Rapid loss of stress resistance in Drosophila melanogaster under adaptation to laboratory culture. Evolution. 2001 Feb;55(2):436–438. doi: 10.1111/j.0014-3820.2001.tb01305.x. [DOI] [PubMed] [Google Scholar]
  12. Houle D. Comparing evolvability and variability of quantitative traits. Genetics. 1992 Jan;130(1):195–204. doi: 10.1093/genetics/130.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Houle D., Morikawa B., Lynch M. Comparing mutational variabilities. Genetics. 1996 Jul;143(3):1467–1483. doi: 10.1093/genetics/143.3.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keightley P. D., Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. doi: 10.1093/genetics/153.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kelly J. K. An experimental method for evaluating the contribution of deleterious mutations to quantitative trait variation. Genet Res. 1999 Jun;73(3):263–273. doi: 10.1017/s0016672399003766. [DOI] [PubMed] [Google Scholar]
  17. Kelly J. K., Arathi H. S. Inbreeding and the genetic variance in floral traits of Mimulus guttatus. Heredity (Edinb) 2003 Jan;90(1):77–83. doi: 10.1038/sj.hdy.6800181. [DOI] [PubMed] [Google Scholar]
  18. Kelly J. K., Willis J. H. Deleterious mutations and genetic variation for flower size in Mimulus guttatus. Evolution. 2001 May;55(5):937–942. doi: 10.1554/0014-3820(2001)055[0937:dmagvf]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  19. Kondrashov A. S. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J Theor Biol. 1995 Aug 21;175(4):583–594. doi: 10.1006/jtbi.1995.0167. [DOI] [PubMed] [Google Scholar]
  20. Kondrashov A. S., Crow J. F. A molecular approach to estimating the human deleterious mutation rate. Hum Mutat. 1993;2(3):229–234. doi: 10.1002/humu.1380020312. [DOI] [PubMed] [Google Scholar]
  21. Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
  22. Kondrashov A. S. Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genet Res. 1984 Oct;44(2):199–217. doi: 10.1017/s0016672300026392. [DOI] [PubMed] [Google Scholar]
  23. MULLER H. J. Our load of mutations. Am J Hum Genet. 1950 Jun;2(2):111–176. [PMC free article] [PubMed] [Google Scholar]
  24. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Macnair M. R., Cumbes Q. J. The genetic architecture of interspecific variation in mimulus. Genetics. 1989 May;122(1):211–222. doi: 10.1093/genetics/122.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morton N. E., Crow J. F., Muller H. J. AN ESTIMATE OF THE MUTATIONAL DAMAGE IN MAN FROM DATA ON CONSANGUINEOUS MARRIAGES. Proc Natl Acad Sci U S A. 1956 Nov;42(11):855–863. doi: 10.1073/pnas.42.11.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mukai T., Nagano S. The Genetic Structure of Natural Populations of DROSOPHILA MELANOGASTER. Xvi. Excess of Additive Genetic Variance of Viability. Genetics. 1983 Sep;105(1):115–134. doi: 10.1093/genetics/105.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mukai T., Yamaguchi O. The genetic structure of natural populations of Drosophila melanogaster. XI. Genetic variability in a local population. Genetics. 1974 Feb;76(2):339–366. doi: 10.1093/genetics/76.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pálsson S. Selection on a modifier of recombination rate due to linked deleterious mutations. J Hered. 2002 Jan-Feb;93(1):22–26. doi: 10.1093/jhered/93.1.22. [DOI] [PubMed] [Google Scholar]
  31. Shaw Frank H., Geyer Charles J., Shaw Ruth G. A comprehensive model of mutations affecting fitness and inferences for Arabidopsis thaliana. Evolution. 2002 Mar;56(3):453–463. doi: 10.1111/j.0014-3820.2002.tb01358.x. [DOI] [PubMed] [Google Scholar]
  32. Shaw R. G., Byers D. L., Shaw F. H. Genetic components of variation in Nemophila menziesii undergoing inbreeding: morphology and flowering time. Genetics. 1998 Dec;150(4):1649–1661. doi: 10.1093/genetics/150.4.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  34. Takano T., Kusakabe S., Mukai T. The genetic structure of natural populations of Drosophila melanogaster. XX. Comparison of genotype-environment interaction in viability between a northern and a southern population. Genetics. 1987 Oct;117(2):245–254. doi: 10.1093/genetics/117.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
  36. Willis J. H. Inbreeding load, average dominance and the mutation rate for mildly deleterious alleles in Mimulus guttatus. Genetics. 1999 Dec;153(4):1885–1898. doi: 10.1093/genetics/153.4.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhang Xu-Sheng, Wang Jinliang, Hill William G. Pleiotropic model of maintenance of quantitative genetic variation at mutation-selection balance. Genetics. 2002 May;161(1):419–433. doi: 10.1093/genetics/161.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES