Skip to main content
Genetics logoLink to Genetics
. 2003 Aug;164(4):1271–1277. doi: 10.1093/genetics/164.4.1271

Bacterial evolution through the selective loss of beneficial Genes. Trade-offs in expression involving two loci.

Erik R Zinser 1, Dominique Schneider 1, Michel Blot 1, Roberto Kolter 1
PMCID: PMC1462639  PMID: 12930738

Abstract

The loss of preexisting genes or gene activities during evolution is a major mechanism of ecological specialization. Evolutionary processes that can account for gene loss or inactivation have so far been restricted to one of two mechanisms: direct selection for the loss of gene activities that are disadvantageous under the conditions of selection (i.e., antagonistic pleiotropy) and selection-independent genetic drift of neutral (or nearly neutral) mutations (i.e., mutation accumulation). In this study we demonstrate with an evolved strain of Escherichia coli that a third, distinct mechanism exists by which gene activities can be lost. This selection-dependent mechanism involves the expropriation of one gene's upstream regulatory element by a second gene via a homologous recombination event. Resulting from this genetic exchange is the activation of the second gene and a concomitant inactivation of the first gene. This gene-for-gene expression tradeoff provides a net fitness gain, even if the forfeited activity of the first gene can play a positive role in fitness under the conditions of selection.

Full Text

The Full Text of this article is available as a PDF (115.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson S. G., Zomorodipour A., Andersson J. O., Sicheritz-Pontén T., Alsmark U. C., Podowski R. M., Näslund A. K., Eriksson A. S., Winkler H. H., Kurland C. G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998 Nov 12;396(6707):133–140. doi: 10.1038/24094. [DOI] [PubMed] [Google Scholar]
  2. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  3. Busby S., Ebright R. H. Transcription activation by catabolite activator protein (CAP). J Mol Biol. 1999 Oct 22;293(2):199–213. doi: 10.1006/jmbi.1999.3161. [DOI] [PubMed] [Google Scholar]
  4. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C., Harris D. Massive gene decay in the leprosy bacillus. Nature. 2001 Feb 22;409(6823):1007–1011. doi: 10.1038/35059006. [DOI] [PubMed] [Google Scholar]
  5. Cooper V. S., Lenski R. E. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature. 2000 Oct 12;407(6805):736–739. doi: 10.1038/35037572. [DOI] [PubMed] [Google Scholar]
  6. Dalla-Favera R., Bregni M., Erikson J., Patterson D., Gallo R. C., Croce C. M. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7824–7827. doi: 10.1073/pnas.79.24.7824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Donnenberg M. S., Kaper J. B. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 1991 Dec;59(12):4310–4317. doi: 10.1128/iai.59.12.4310-4317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Finkel S. E., Kolter R. Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4023–4027. doi: 10.1073/pnas.96.7.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guttman D. S., Dykhuizen D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. doi: 10.1126/science.7973728. [DOI] [PubMed] [Google Scholar]
  10. Henderson I. R., Owen P., Nataro J. P. Molecular switches--the ON and OFF of bacterial phase variation. Mol Microbiol. 1999 Sep;33(5):919–932. doi: 10.1046/j.1365-2958.1999.01555.x. [DOI] [PubMed] [Google Scholar]
  11. Hughes K. A., Charlesworth B. A genetic analysis of senescence in Drosophila. Nature. 1994 Jan 6;367(6458):64–66. doi: 10.1038/367064a0. [DOI] [PubMed] [Google Scholar]
  12. Kasak L., Hôrak R., Nurk A., Talvik K., Kivisaar M. Regulation of the catechol 1,2-dioxygenase- and phenol monooxygenase-encoding pheBA operon in Pseudomonas putida PaW85. J Bacteriol. 1993 Dec;175(24):8038–8042. doi: 10.1128/jb.175.24.8038-8042.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  14. Kröger M., Hobom G. Structural analysis of insertion sequence IS5. Nature. 1982 May 13;297(5862):159–162. doi: 10.1038/297159a0. [DOI] [PubMed] [Google Scholar]
  15. Lawrence J. G. Gene transfer, speciation, and the evolution of bacterial genomes. Curr Opin Microbiol. 1999 Oct;2(5):519–523. doi: 10.1016/s1369-5274(99)00010-7. [DOI] [PubMed] [Google Scholar]
  16. Lawrence J. G., Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9413–9417. doi: 10.1073/pnas.95.16.9413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lawrence J. G., Roth J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics. 1996 Aug;143(4):1843–1860. doi: 10.1093/genetics/143.4.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maurelli A. T., Fernández R. E., Bloch C. A., Rode C. K., Fasano A. "Black holes" and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3943–3948. doi: 10.1073/pnas.95.7.3943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morishita T., Deguchi Y., Yajima M., Sakurai T., Yura T. Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol. 1981 Oct;148(1):64–71. doi: 10.1128/jb.148.1.64-71.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nakata N., Tobe T., Fukuda I., Suzuki T., Komatsu K., Yoshikawa M., Sasakawa C. The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol Microbiol. 1993 Aug;9(3):459–468. doi: 10.1111/j.1365-2958.1993.tb01707.x. [DOI] [PubMed] [Google Scholar]
  21. Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C., Ketchum K. A. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999 May 27;399(6734):323–329. doi: 10.1038/20601. [DOI] [PubMed] [Google Scholar]
  22. Papadopoulos D., Schneider D., Meier-Eiss J., Arber W., Lenski R. E., Blot M. Genomic evolution during a 10,000-generation experiment with bacteria. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3807–3812. doi: 10.1073/pnas.96.7.3807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perna N. T., Plunkett G., 3rd, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J., Kirkpatrick H. A. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001 Jan 25;409(6819):529–533. doi: 10.1038/35054089. [DOI] [PubMed] [Google Scholar]
  24. Rose M., Charlesworth B. A test of evolutionary theories of senescence. Nature. 1980 Sep 11;287(5778):141–142. doi: 10.1038/287141a0. [DOI] [PubMed] [Google Scholar]
  25. Schmid M. B., Roth J. R. Selection and endpoint distribution of bacterial inversion mutations. Genetics. 1983 Nov;105(3):539–557. doi: 10.1093/genetics/105.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schneider D., Duperchy E., Coursange E., Lenski R. E., Blot M. Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics. 2000 Oct;156(2):477–488. doi: 10.1093/genetics/156.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shen-Ong G. L., Keath E. J., Piccoli S. P., Cole M. D. Novel myc oncogene RNA from abortive immunoglobulin-gene recombination in mouse plasmacytomas. Cell. 1982 Dec;31(2 Pt 1):443–452. doi: 10.1016/0092-8674(82)90137-4. [DOI] [PubMed] [Google Scholar]
  28. Simons R. W., Houman F., Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene. 1987;53(1):85–96. doi: 10.1016/0378-1119(87)90095-3. [DOI] [PubMed] [Google Scholar]
  29. Syvanen M. The evolutionary implications of mobile genetic elements. Annu Rev Genet. 1984;18:271–293. doi: 10.1146/annurev.ge.18.120184.001415. [DOI] [PubMed] [Google Scholar]
  30. Taub R., Kirsch I., Morton C., Lenoir G., Swan D., Tronick S., Aaronson S., Leder P. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7837–7841. doi: 10.1073/pnas.79.24.7837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Willis R. C., Furlong C. E. Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. J Biol Chem. 1975 Apr 10;250(7):2581–2586. [PubMed] [Google Scholar]
  32. Wilmes-Riesenberg M. R., Wanner B. L. TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol. 1992 Jul;174(14):4558–4575. doi: 10.1128/jb.174.14.4558-4575.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zambrano M. M., Kolter R. Escherichia coli mutants lacking NADH dehydrogenase I have a competitive disadvantage in stationary phase. J Bacteriol. 1993 Sep;175(17):5642–5647. doi: 10.1128/jb.175.17.5642-5647.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zambrano M. M., Siegele D. A., Almirón M., Tormo A., Kolter R. Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science. 1993 Mar 19;259(5102):1757–1760. doi: 10.1126/science.7681219. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES