Abstract
The stability of the structure of bacterial genomes is challenged by recombination events. Since major rearrangements (i.e., inversions) are thought to frequently operate by homologous recombination between inverted repeats, we analyzed the presence and distribution of such repeats in bacterial genomes and their relation to the conservation of chromosomal structure. First, we show that there is a strong under-representation of inverted repeats, relative to direct repeats, in most chromosomes, especially among the ones regarded as most stable. Second, we show that the avoidance of repeats is frequently associated with the stability of the genomes. Closely related genomes reported to differ in terms of stability are also found to differ in the number of inverted repeats. Third, when using replication strand bias as a proxy for genome stability, we find a significant negative correlation between this strand bias and the abundance of inverted repeats. Fourth, when measuring the recombining potential of inverted repeats and their eventual impact on different features of the chromosomal structure, we observe a tendency of repeats to be located in the chromosome in such a way that rearrangements produce a smaller strand switch and smaller asymmetries than expected by chance. Finally, we discuss the limitations of our analysis and the influence of factors such as the nature of repeats, e.g., transposases, or the differences in the recombination machinery among bacteria. These results shed light on the challenges imposed on the genome structure by the presence of inverted repeats.
Full Text
The Full Text of this article is available as a PDF (176.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achaz G., Coissac E., Viari A., Netter P. Analysis of intrachromosomal duplications in yeast Saccharomyces cerevisiae: a possible model for their origin. Mol Biol Evol. 2000 Aug;17(8):1268–1275. doi: 10.1093/oxfordjournals.molbev.a026410. [DOI] [PubMed] [Google Scholar]
- Achaz G., Rocha E. P. C., Netter P., Coissac E. Origin and fate of repeats in bacteria. Nucleic Acids Res. 2002 Jul 1;30(13):2987–2994. doi: 10.1093/nar/gkf391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amundsen Susan K., Smith Gerald R. Interchangeable parts of the Escherichia coli recombination machinery. Cell. 2003 Mar 21;112(6):741–744. doi: 10.1016/s0092-8674(03)00197-1. [DOI] [PubMed] [Google Scholar]
- Bergthorsson U., Ochman H. Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol. 1998 Jan;15(1):6–16. doi: 10.1093/oxfordjournals.molbev.a025847. [DOI] [PubMed] [Google Scholar]
- Casjens S. The diverse and dynamic structure of bacterial genomes. Annu Rev Genet. 1998;32:339–377. doi: 10.1146/annurev.genet.32.1.339. [DOI] [PubMed] [Google Scholar]
- Courcelle J., Ganesan A. K., Hanawalt P. C. Therefore, what are recombination proteins there for? Bioessays. 2001 May;23(5):463–470. doi: 10.1002/bies.1065. [DOI] [PubMed] [Google Scholar]
- Deng Wen, Burland Valerie, Plunkett Guy, 3rd, Boutin Adam, Mayhew George F., Liss Paul, Perna Nicole T., Rose Debra J., Mau Bob, Zhou Shiguo. Genome sequence of Yersinia pestis KIM. J Bacteriol. 2002 Aug;184(16):4601–4611. doi: 10.1128/JB.184.16.4601-4611.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisen J. A., Hanawalt P. C. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res. 1999 Dec 7;435(3):171–213. doi: 10.1016/s0921-8777(99)00050-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank A. C., Lobry J. R. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene. 1999 Sep 30;238(1):65–77. doi: 10.1016/s0378-1119(99)00297-8. [DOI] [PubMed] [Google Scholar]
- Guijo M. I., Patte J., del Mar Campos M., Louarn J. M., Rebollo J. E. Localized remodeling of the Escherichia coli chromosome: the patchwork of segments refractory and tolerant to inversion near the replication terminus. Genetics. 2001 Apr;157(4):1413–1423. doi: 10.1093/genetics/157.4.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himmelreich R., Plagens H., Hilbert H., Reiner B., Herrmann R. Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res. 1997 Feb 15;25(4):701–712. doi: 10.1093/nar/25.4.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes D. Co-evolution of the tuf genes links gene conversion with the generation of chromosomal inversions. J Mol Biol. 2000 Mar 24;297(2):355–364. doi: 10.1006/jmbi.2000.3587. [DOI] [PubMed] [Google Scholar]
- Itoh T., Takemoto K., Mori H., Gojobori T. Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol. 1999 Mar;16(3):332–346. doi: 10.1093/oxfordjournals.molbev.a026114. [DOI] [PubMed] [Google Scholar]
- Kurtz S., Schleiermacher C. REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics. 1999 May;15(5):426–427. doi: 10.1093/bioinformatics/15.5.426. [DOI] [PubMed] [Google Scholar]
- Liu S. L., Sanderson K. E. Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10303–10308. doi: 10.1073/pnas.93.19.10303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Louarn J. M., Bouché J. P., Legendre F., Louarn J., Patte J. Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis. Mol Gen Genet. 1985;201(3):467–476. doi: 10.1007/BF00331341. [DOI] [PubMed] [Google Scholar]
- Louarn J. M., Louarn J., François V., Patte J. Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome. J Bacteriol. 1991 Aug;173(16):5097–5104. doi: 10.1128/jb.173.16.5097-5104.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackiewicz P., Mackiewicz D., Gierlik A., Kowalczuk M., Nowicka A., Dudkiewicz M., Dudek M. R., Cebrat S. The differential killing of genes by inversions in prokaryotic genomes. J Mol Evol. 2001 Dec;53(6):615–621. doi: 10.1007/s002390010248. [DOI] [PubMed] [Google Scholar]
- McLean M. J., Wolfe K. H., Devine K. M. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol. 1998 Dec;47(6):691–696. doi: 10.1007/pl00006428. [DOI] [PubMed] [Google Scholar]
- Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000 May 18;405(6784):299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
- Ogata H., Audic S., Barbe V., Artiguenave F., Fournier P. E., Raoult D., Claverie J. M. Selfish DNA in protein-coding genes of Rickettsia. Science. 2000 Oct 13;290(5490):347–350. doi: 10.1126/science.290.5490.347. [DOI] [PubMed] [Google Scholar]
- Roberts M. S., Cohan F. M. The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics. 1993 Jun;134(2):401–408. doi: 10.1093/genetics/134.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rocha E. P., Danchin A. Ongoing evolution of strand composition in bacterial genomes. Mol Biol Evol. 2001 Sep;18(9):1789–1799. doi: 10.1093/oxfordjournals.molbev.a003966. [DOI] [PubMed] [Google Scholar]
- Rocha E. P., Danchin A., Viari A. Functional and evolutionary roles of long repeats in prokaryotes. Res Microbiol. 1999 Nov-Dec;150(9-10):725–733. doi: 10.1016/s0923-2508(99)00120-5. [DOI] [PubMed] [Google Scholar]
- Rocha Eduardo P. C., Blanchard Alain. Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res. 2002 May 1;30(9):2031–2042. doi: 10.1093/nar/30.9.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romero D., Palacios R. Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet. 1997;31:91–111. doi: 10.1146/annurev.genet.31.1.91. [DOI] [PubMed] [Google Scholar]
- Saunders N. J., Jeffries A. C., Peden J. F., Hood D. W., Tettelin H., Rappuoli R., Moxon E. R. Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol. 2000 Jul;37(1):207–215. doi: 10.1046/j.1365-2958.2000.02000.x. [DOI] [PubMed] [Google Scholar]
- Segall A., Mahan M. J., Roth J. R. Rearrangement of the bacterial chromosome: forbidden inversions. Science. 1988 Sep 9;241(4871):1314–1318. doi: 10.1126/science.3045970. [DOI] [PubMed] [Google Scholar]
- Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shigenobu S., Watanabe H., Hattori M., Sakaki Y., Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000 Sep 7;407(6800):81–86. doi: 10.1038/35024074. [DOI] [PubMed] [Google Scholar]
- Smith G. R. Homologous recombination in procaryotes. Microbiol Rev. 1988 Mar;52(1):1–28. doi: 10.1128/mr.52.1.1-28.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suyama M., Bork P. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 2001 Jan;17(1):10–13. doi: 10.1016/s0168-9525(00)02159-4. [DOI] [PubMed] [Google Scholar]
- Tamas Ivica, Klasson Lisa, Canbäck Björn, Näslund A. Kristina, Eriksson Ann-Sofie, Wernegreen Jennifer J., Sandström Jonas P., Moran Nancy A., Andersson Siv G. E. 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002 Jun 28;296(5577):2376–2379. doi: 10.1126/science.1071278. [DOI] [PubMed] [Google Scholar]
- Tillier E. R., Collins R. A. Replication orientation affects the rate and direction of bacterial gene evolution. J Mol Evol. 2000 Nov;51(5):459–463. doi: 10.1007/s002390010108. [DOI] [PubMed] [Google Scholar]
- Vulić M., Dionisio F., Taddei F., Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9763–9767. doi: 10.1073/pnas.94.18.9763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf Y. I., Rogozin I. B., Kondrashov A. S., Koonin E. V. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 2001 Mar;11(3):356–372. doi: 10.1101/gr.gr-1619r. [DOI] [PubMed] [Google Scholar]
- Zivanovic Yvan, Lopez Philippe, Philippe Hervé, Forterre Patrick. Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. Nucleic Acids Res. 2002 May 1;30(9):1902–1910. doi: 10.1093/nar/30.9.1902. [DOI] [PMC free article] [PubMed] [Google Scholar]