Skip to main content
Genetics logoLink to Genetics
. 2003 Aug;164(4):1607–1614. doi: 10.1093/genetics/164.4.1607

Dimension reduction for mapping mRNA abundance as quantitative traits.

Hong Lan 1, Jonathan P Stoehr 1, Samuel T Nadler 1, Kathryn L Schueler 1, Brian S Yandell 1, Alan D Attie 1
PMCID: PMC1462655  PMID: 12930764

Abstract

The advent of sophisticated genomic techniques for gene mapping and microarray analysis has provided opportunities to map mRNA abundance to quantitative trait loci (QTL) throughout the genome. Unfortunately, simple mapping of each individual mRNA trait on the scale of a typical microarray experiment is computationally intensive, subject to high sample variance, and therefore underpowered. However, this problem can be addressed by capitalizing on correlation among the large number of mRNA traits. We present a method to reduce the dimensionality for mapping gene expression data as quantitative traits. We used a blind method, principal components, and a sighted method, hierarchical clustering seeded by disease relevant traits, to define new traits composed of a small collection of promising mRNAs. We validated the principle of our approach by mapping the expression levels of metabolism genes in a population of F(2)-ob/ob mice derived from the BTBR and C57BL/6J strains. We found that lipogenic and gluconeogenic mRNAs, which are known targets of insulin action, were closely associated with the insulin trait. Multiple interval mapping and Bayesian interval mapping of this new trait revealed significant linkages to chromosome regions that were contained in loci associated with type 2 diabetes in this same mouse sample. As a further statistical refinement, we show that principal component analysis also effectively reduced dimensions for mapping phenotypes composed of mRNA abundances.

Full Text

The Full Text of this article is available as a PDF (157.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brem Rachel B., Yvert Gaël, Clinton Rebecca, Kruglyak Leonid. Genetic dissection of transcriptional regulation in budding yeast. Science. 2002 Mar 28;296(5568):752–755. doi: 10.1126/science.1069516. [DOI] [PubMed] [Google Scholar]
  2. Broman Karl W., Wu Hao, Sen Saunak, Churchill Gary A. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003 May 1;19(7):889–890. doi: 10.1093/bioinformatics/btg112. [DOI] [PubMed] [Google Scholar]
  3. Chase Kevin, Carrier David R., Adler Frederick R., Jarvik Tyler, Ostrander Elaine A., Lorentzen Travis D., Lark Karl G. Genetic basis for systems of skeletal quantitative traits: principal component analysis of the canid skeleton. Proc Natl Acad Sci U S A. 2002 Jul 11;99(15):9930–9935. doi: 10.1073/pnas.152333099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheung Vivian G., Spielman Richard S. The genetics of variation in gene expression. Nat Genet. 2002 Dec;32 (Suppl):522–525. doi: 10.1038/ng1036. [DOI] [PubMed] [Google Scholar]
  5. Cohen Paul, Miyazaki Makoto, Socci Nicholas D., Hagge-Greenberg Aaron, Liedtke Wolfgang, Soukas Alexander A., Sharma Ratnendra, Hudgins Lisa C., Ntambi James M., Friedman Jeffrey M. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science. 2002 Jul 12;297(5579):240–243. doi: 10.1126/science.1071527. [DOI] [PubMed] [Google Scholar]
  6. Dumas P., Sun Y., Corbeil G., Tremblay S., Pausova Z., Kren V., Krenova D., Pravenec M., Hamet P., Tremblay J. Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. J Hypertens. 2000 May;18(5):545–551. doi: 10.1097/00004872-200018050-00006. [DOI] [PubMed] [Google Scholar]
  7. Eisen M. B., Spellman P. T., Brown P. O., Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863–14868. doi: 10.1073/pnas.95.25.14863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  11. Liu J., Mercer J. M., Stam L. F., Gibson G. C., Zeng Z. B., Laurie C. C. Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics. 1996 Apr;142(4):1129–1145. doi: 10.1093/genetics/142.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCarthy Mark I., Froguel Philippe. Genetic approaches to the molecular understanding of type 2 diabetes. Am J Physiol Endocrinol Metab. 2002 Aug;283(2):E217–E225. doi: 10.1152/ajpendo.00099.2002. [DOI] [PubMed] [Google Scholar]
  13. Mähler Michael, Most Claudia, Schmidtke Sybille, Sundberg John P., Li Renhua, Hedrich Hans Jürgen, Churchill Gary A. Genetics of colitis susceptibility in IL-10-deficient mice: backcross versus F2 results contrasted by principal component analysis. Genomics. 2002 Sep;80(3):274–282. doi: 10.1006/geno.2002.6840. [DOI] [PubMed] [Google Scholar]
  14. Ntambi James M., Miyazaki Makoto, Stoehr Jonathan P., Lan Hong, Kendziorski Christina M., Yandell Brian S., Song Yang, Cohen Paul, Friedman Jeffrey M., Attie Alan D. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A. 2002 Aug 12;99(17):11482–11486. doi: 10.1073/pnas.132384699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ranheim T., Dumke C., Schueler K. L., Cartee G. D., Attie A. D. Interaction between BTBR and C57BL/6J genomes produces an insulin resistance syndrome in (BTBR x C57BL/6J) F1 mice. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):3286–3293. doi: 10.1161/01.atv.17.11.3286. [DOI] [PubMed] [Google Scholar]
  16. Satagopan J. M., Yandell B. S., Newton M. A., Osborn T. C. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics. 1996 Oct;144(2):805–816. doi: 10.1093/genetics/144.2.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shimomura I., Bashmakov Y., Ikemoto S., Horton J. D., Brown M. S., Goldstein J. L. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13656–13661. doi: 10.1073/pnas.96.24.13656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shimomura I., Matsuda M., Hammer R. E., Bashmakov Y., Brown M. S., Goldstein J. L. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell. 2000 Jul;6(1):77–86. [PubMed] [Google Scholar]
  19. Stoehr J. P., Nadler S. T., Schueler K. L., Rabaglia M. E., Yandell B. S., Metz S. A., Attie A. D. Genetic obesity unmasks nonlinear interactions between murine type 2 diabetes susceptibility loci. Diabetes. 2000 Nov;49(11):1946–1954. doi: 10.2337/diabetes.49.11.1946. [DOI] [PubMed] [Google Scholar]
  20. West M., Blanchette C., Dressman H., Huang E., Ishida S., Spang R., Zuzan H., Olson J. A., Jr, Marks J. R., Nevins J. R. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A. 2001 Sep 18;98(20):11462–11467. doi: 10.1073/pnas.201162998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zeng Z. B., Liu J., Stam L. F., Kao C. H., Mercer J. M., Laurie C. C. Genetic architecture of a morphological shape difference between two Drosophila species. Genetics. 2000 Jan;154(1):299–310. doi: 10.1093/genetics/154.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES