Skip to main content
Genetics logoLink to Genetics
. 2003 Aug;164(4):1657–1666. doi: 10.1093/genetics/164.4.1657

High-resolution mapping of quantitative trait loci by selective recombinant genotyping.

Y Ronin 1, A Korol 1, M Shtemberg 1, E Nevo 1, M Soller 1
PMCID: PMC1462674  PMID: 12930769

Abstract

Selective recombinant genotyping (SRG) is a three-stage procedure for high-resolution mapping of a QTL that has previously been mapped to a known confidence interval (target C.I.). In stage 1, a large mapping population is accessed and phenotyped, and a proportion, P, of the high and low tails is selected. In stage 2, the selected individuals are genotyped for a pair of markers flanking the target C.I., and a group of R individuals carrying recombinant chromosomes in the target interval are identified. In stage 3, the recombinant individuals are genotyped for a set of M markers spanning the target C.I. Extensive simulations showed that: (1) Standard error of QTL location (SEQTL) decreased when QTL effect (d) or population size (N) increased, but was constant for given "power factor" (PF = d(2)N); (2) increasing the proportion selected in the tails beyond 0.25 had only a negligible effect on SEQTL; and (3) marker spacing in the target interval had a remarkably powerful effect on SEQTL, yielding a reduction of up to 10-fold in going from highest (24 cM) to lowest (0.29 cM) spacing at given population size and QTL effect. At the densest marker spacing, SEQTL of 1.0-0.06 cM were obtained at PF = 500-16,000. Two new genotyping procedures, the half-section algorithm and the golden section/half-section algorithm, allow the equivalent of complete haplotyping of the target C.I. in the recombinant individuals to be achieved with many fewer data points than would be required by complete individual genotyping.

Full Text

The Full Text of this article is available as a PDF (203.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet. 1998 Jan;18(1):19–24. doi: 10.1038/ng0198-19. [DOI] [PubMed] [Google Scholar]
  2. Darvasi A. Interval-specific congenic strains (ISCS): an experimental design for mapping a QTL into a 1-centimorgan interval. Mamm Genome. 1997 Mar;8(3):163–167. doi: 10.1007/s003359900382. [DOI] [PubMed] [Google Scholar]
  3. Darvasi A., Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet. 1997 Mar;27(2):125–132. doi: 10.1023/a:1025685324830. [DOI] [PubMed] [Google Scholar]
  4. Darvasi A., Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics. 1995 Nov;141(3):1199–1207. doi: 10.1093/genetics/141.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Darvasi A., Soller M. Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics. 1994 Dec;138(4):1365–1373. doi: 10.1093/genetics/138.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Darvasi A. The effect of selective genotyping on QTL mapping accuracy. Mamm Genome. 1997 Jan;8(1):67–68. doi: 10.1007/s003359900353. [DOI] [PubMed] [Google Scholar]
  7. Darvasi A., Weinreb A., Minke V., Weller J. I., Soller M. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics. 1993 Jul;134(3):943–951. doi: 10.1093/genetics/134.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill W. G. Selection with recurrent backcrossing to develop congenic lines for quantitative trait loci analysis. Genetics. 1998 Mar;148(3):1341–1352. doi: 10.1093/genetics/148.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Korol A. B., Ronin Y. I., Itskovich A. M., Peng J., Nevo E. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics. 2001 Apr;157(4):1789–1803. doi: 10.1093/genetics/157.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Korol A. B., Ronin Y. I., Kirzhner V. M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics. 1995 Jul;140(3):1137–1147. doi: 10.1093/genetics/140.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lipkin E., Mosig M. O., Darvasi A., Ezra E., Shalom A., Friedmann A., Soller M. Quantitative trait locus mapping in dairy cattle by means of selective milk DNA pooling using dinucleotide microsatellite markers: analysis of milk protein percentage. Genetics. 1998 Jul;149(3):1557–1567. doi: 10.1093/genetics/149.3.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ronin Y. I., Korol A. B., Nevo E. Single- and multiple-trait mapping analysis of linked quantitative trait loci. Some asymptotic analytical approximations. Genetics. 1999 Jan;151(1):387–396. doi: 10.1093/genetics/151.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Soller M., Andersson L. Genomic approaches to the improvement of disease resistance in farm animals. Rev Sci Tech. 1998 Apr;17(1):329–345. doi: 10.20506/rst.17.1.1102. [DOI] [PubMed] [Google Scholar]
  17. Thaller G., Hoeschele I. Fine-mapping of quantitative trait loci in half-sib families using current recombinations. Genet Res. 2000 Aug;76(1):87–104. doi: 10.1017/s0016672300004638. [DOI] [PubMed] [Google Scholar]
  18. Weller J. I., Kashi Y., Soller M. Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci. 1990 Sep;73(9):2525–2537. doi: 10.3168/jds.S0022-0302(90)78938-2. [DOI] [PubMed] [Google Scholar]
  19. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES