Abstract
Intramolecular triple helices have been obtained by folding back twice oligonucleotides formed by decamers bound by non-nucleotide linkers: dA10-linker-dA10-linker-dT10 and dA10-linker-dT10-linker-dA10. We have thus prepared two triple helices with forced third strand orientation, respectively antiparallel (apA*A-T) and parallel (pA*A-T) with respect to the adenosine strand of the Watson-Crick duplex. The existence of the triple helices has been shown by FTIR, UV and fluorescence spectroscopies. Similar melting temperatures have been obtained in very different oligomer concentration conditions (micromolar solutions for thermal denaturation classically followed by UV spectroscopy, milimolar solutions in the case of melting monitored by FTIR spectroscopy) showing that the triple helices are intramolecular. The stability of the parallel triplex is found to be slightly lower than that of the antiparallel (deltaT(m) = 6 degrees C). The sugar conformations determined by FTIR are different for both triplexes. Only South-type sugars are found in the antiparallel triplex whereas both South- and North-type sugars are detected in the parallel triplex. In this case, thymidine sugars have a South-type geometry, and the adenosine strand of the Watson-Crick duplex has North-type sugars. For the antiparallel triplex the experimental results and molecular modeling data are consistent with a reverse-Hoogsteen like third-strand base pairing and South-type sugar conformation. An energetically optimized model of the parallel A*A-T triple helix with a non-uniform distribution of sugar conformations is discussed.
Full Text
The Full Text of this article is available as a PDF (92.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam S., Liquier J., Taboury J. A., Taillandier E. Right- and left-handed helixes of poly[d(A-T)].poly[d(A-T)] investigated by infrared spectroscopy. Biochemistry. 1986 Jun 3;25(11):3220–3225. doi: 10.1021/bi00359a021. [DOI] [PubMed] [Google Scholar]
- Akhebat A., Dagneaux C., Liquier J., Taillandier E. Triple helical polynucleotidic structures: an FTIR study of the C+ .G. Ctriplet. J Biomol Struct Dyn. 1992 Dec;10(3):577–588. doi: 10.1080/07391102.1992.10508669. [DOI] [PubMed] [Google Scholar]
- Baliga R., Singleton J. W., Dervan P. B. RecA.oligonucleotide filaments bind in the minor groove of double-stranded DNA. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10393–10397. doi: 10.1073/pnas.92.22.10393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
- Borisova O. F., Golova YuB, Gottikh B. P., Zibrov A. S., Il'icheva I. A., Lysov YuP, Mamayeva O. K., Chernov B. K., Chernyi A. A., Shchyolkina A. K. Parallel double stranded helices and the tertiary structure of nucleic acids. J Biomol Struct Dyn. 1991 Jun;8(6):1187–1210. doi: 10.1080/07391102.1991.10507878. [DOI] [PubMed] [Google Scholar]
- Bornet O., Lancelot G., Chanteloup L., Nguyen T. T., Beau J. M. Selectively 13C-enriched DNA: 13C and 1H assignments of a triple helix by two-dimensional relayed HMQC experiments. J Biomol NMR. 1994 Jul;4(4):575–580. doi: 10.1007/BF00156621. [DOI] [PubMed] [Google Scholar]
- Bornet O., Lancelot G. Solution structure of a selectively 13C-labeled intramolecular DNA triplex. J Biomol Struct Dyn. 1995 Feb;12(4):803–814. doi: 10.1080/07391102.1995.10508777. [DOI] [PubMed] [Google Scholar]
- Broitman S. L., Im D. D., Fresco J. R. Formation of the triple-stranded polynucleotide helix, poly(A.A.U). Proc Natl Acad Sci U S A. 1987 Aug;84(15):5120–5124. doi: 10.1073/pnas.84.15.5120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dagneaux C., Liquier J., Taillandier E. FTIR study of a nonclassical dT10*dA10-dT10 intramolecular triple helix. Biochemistry. 1995 Nov 14;34(45):14815–14818. doi: 10.1021/bi00045a023. [DOI] [PubMed] [Google Scholar]
- Dagneaux C., Porumb H., Liquier J., Takahashi M., Taillandier E. Conformations of three-stranded DNA structures formed in presence and in absence of the RecA protein. J Biomol Struct Dyn. 1995 Dec;13(3):465–470. doi: 10.1080/07391102.1995.10508856. [DOI] [PubMed] [Google Scholar]
- Durand M., Peloille S., Thuong N. T., Maurizot J. C. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains. Biochemistry. 1992 Sep 29;31(38):9197–9204. doi: 10.1021/bi00153a012. [DOI] [PubMed] [Google Scholar]
- Havre P. A., Gunther E. J., Gasparro F. P., Glazer P. M. Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7879–7883. doi: 10.1073/pnas.90.16.7879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard F. B., Miles H. T., Ross P. D. The poly(dT).2poly(dA) triple helix. Biochemistry. 1995 May 30;34(21):7135–7144. doi: 10.1021/bi00021a027. [DOI] [PubMed] [Google Scholar]
- Hsieh P., Camerini-Otero C. S., Camerini-Otero R. D. Pairing of homologous DNA sequences by proteins: evidence for three-stranded DNA. Genes Dev. 1990 Nov;4(11):1951–1963. doi: 10.1101/gad.4.11.1951. [DOI] [PubMed] [Google Scholar]
- Hsieh P., Camerini-Otero C. S., Camerini-Otero R. D. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6492–6496. doi: 10.1073/pnas.89.14.6492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häner R., Dervan P. B. Single-strand DNA triple-helix formation. Biochemistry. 1990 Oct 23;29(42):9761–9765. doi: 10.1021/bi00494a001. [DOI] [PubMed] [Google Scholar]
- Laughton C. A., Neidle S. Prediction of the structure of the Y+.R-.R(+)-type DNA triple helix by molecular modelling. Nucleic Acids Res. 1992 Dec 25;20(24):6535–6541. doi: 10.1093/nar/20.24.6535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Letai A. G., Palladino M. A., Fromm E., Rizzo V., Fresco J. R. Specificity in formation of triple-stranded nucleic acid helical complexes: studies with agarose-linked polyribonucleotide affinity columns. Biochemistry. 1988 Dec 27;27(26):9108–9112. doi: 10.1021/bi00426a007. [DOI] [PubMed] [Google Scholar]
- Liquier J., Coffinier P., Firon M., Taillandier E. Triple helical polynucleotidic structures: sugar conformations determined by FTIR spectroscopy. J Biomol Struct Dyn. 1991 Dec;9(3):437–445. doi: 10.1080/07391102.1991.10507927. [DOI] [PubMed] [Google Scholar]
- Malkov V. A., Voloshin O. N., Soyfer V. N., Frank-Kamenetskii M. D. Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 1993 Feb 11;21(3):585–591. doi: 10.1093/nar/21.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minchenkova L. E., Schyolkina A. K., Chernov B. K., Ivanov V. I. CC/GG contacts facilitate the B to A transition of DNA in solution. J Biomol Struct Dyn. 1986 Dec;4(3):463–476. doi: 10.1080/07391102.1986.10506362. [DOI] [PubMed] [Google Scholar]
- Pilch D. S., Levenson C., Shafer R. H. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry. 1991 Jun 25;30(25):6081–6088. doi: 10.1021/bi00239a001. [DOI] [PubMed] [Google Scholar]
- Piriou J. M., Ketterlé C., Gabarro-Arpa J., Cognet J. A., Le Bret M. A database of 32 DNA triplets to study triple helices by molecular mechanics and dynamics. Biophys Chem. 1994 Jun;50(3):323–343. doi: 10.1016/0301-4622(93)e0103-c. [DOI] [PubMed] [Google Scholar]
- Porumb H., Dagneaux C., Letellier R., Malvy C., Taillandier E. Triple-helices targeted to the polypurine tract of a murine retrovirus. Gene. 1994 Nov 4;149(1):101–107. doi: 10.1016/0378-1119(94)90417-0. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan I., Patel D. J. DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry. 1994 Sep 27;33(38):11405–11416. doi: 10.1021/bi00204a001. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan I., Patel D. J. Solution structure of a purine.purine.pyrimidine DNA triplex containing G.GC and T.AT triples. Structure. 1993 Oct 15;1(2):135–152. doi: 10.1016/0969-2126(93)90028-f. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan I., de los Santos C., Patel D. J. Nuclear magnetic resonance structural studies of A.AT base triple alignments in intramolecular purine.purine.pyrimidine DNA triplexes in solution. J Mol Biol. 1993 Nov 5;234(1):188–197. doi: 10.1006/jmbi.1993.1573. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan I., de los Santos C., Patel D. J. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. J Mol Biol. 1991 Oct 20;221(4):1403–1418. [PubMed] [Google Scholar]
- Rao B. J., Dutreix M., Radding C. M. Stable three-stranded DNA made by RecA protein. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):2984–2988. doi: 10.1073/pnas.88.8.2984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao B. J., Radding C. M. Formation of base triplets by non-Watson-Crick bonds mediates homologous recognition in RecA recombination filaments. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6161–6165. doi: 10.1073/pnas.91.13.6161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shchyolkina A. K., Lysov YuP, Il'ichova I. A., Chernyi A. A., Golova YuB, Chernov B. K., Gottikh B. P., Florentiev V. L. Parallel stranded DNA with AT base pairing. FEBS Lett. 1989 Feb 13;244(1):39–42. doi: 10.1016/0014-5793(89)81157-3. [DOI] [PubMed] [Google Scholar]
- Shchyolkina A. K., Timofeev E. N., Borisova O. F., Il'icheva I. A., Minyat E. E., Khomyakova E. B., Florentiev V. L. The R-form of DNA does exist. FEBS Lett. 1994 Feb 14;339(1-2):113–118. doi: 10.1016/0014-5793(94)80396-x. [DOI] [PubMed] [Google Scholar]
- Stasiak A., Di Capua E., Koller T. Elongation of duplex DNA by recA protein. J Mol Biol. 1981 Sep 25;151(3):557–564. doi: 10.1016/0022-2836(81)90010-3. [DOI] [PubMed] [Google Scholar]
- Van Meervelt L., Vlieghe D., Dautant A., Gallois B., Précigoux G., Kennard O. High-resolution structure of a DNA helix forming (C.G)*G base triplets. Nature. 1995 Apr 20;374(6524):742–744. doi: 10.1038/374742a0. [DOI] [PubMed] [Google Scholar]
- Wang E., Malek S., Feigon J. Structure of a G.T.A triplet in an intramolecular DNA triplex. Biochemistry. 1992 May 26;31(20):4838–4846. doi: 10.1021/bi00135a015. [DOI] [PubMed] [Google Scholar]
- Washbrook E., Fox K. R. Comparison of antiparallel A.AT and T.AT triplets within an alternate strand DNA triple helix. Nucleic Acids Res. 1994 Sep 25;22(19):3977–3982. doi: 10.1093/nar/22.19.3977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhurkin V. B., Raghunathan G., Ulyanov N. B., Camerini-Otero R. D., Jernigan R. L. A parallel DNA triplex as a model for the intermediate in homologous recombination. J Mol Biol. 1994 Jun 3;239(2):181–200. doi: 10.1006/jmbi.1994.1362. [DOI] [PubMed] [Google Scholar]