Skip to main content
Genetics logoLink to Genetics
. 2003 Sep;165(1):185–196. doi: 10.1093/genetics/165.1.185

Functional dissection of a eukaryotic dicistronic gene: transgenic stonedB, but not stonedA, restores normal synaptic properties to Drosophila stoned mutants.

Patricia S Estes 1, Taryn C Jackson 1, Daniel T Stimson 1, Subhabrata Sanyal 1, Leonard E Kelly 1, Mani Ramaswami 1
PMCID: PMC1462730  PMID: 14504226

Abstract

The dicistronic Drosophila stoned mRNA produces two proteins, stonedA and stonedB, that are localized at nerve terminals. While the stoned locus is required for synaptic-vesicle cycling in neurons, distinct or overlapping synaptic functions of stonedA and stonedB have not been clearly identified. Potential functions of stoned products in nonneuronal cells remain entirely unexplored in vivo. Transgene-based analyses presented here demonstrate that exclusively neuronal expression of a dicistronic stoned cDNA is sufficient for rescue of defects observed in lethal and viable stoned mutants. Significantly, expression of a monocistronic stonedB trangene is sufficient for rescuing various phenotypic deficits of stoned mutants, including those in organismal viability, evoked transmitter release, and synaptotagmin retrieval from the plasma membrane. In contrast, a stonedA transgene does not alleviate any stoned mutant phenotype. Novel phenotypic analyses demonstrate that, in addition to regulation of presynaptic function, stoned is required for regulating normal growth and morphology of the motor terminal; however, this developmental function is also provided by a stonedB transgene. Our data, although most consistent with a hypothesis in which stonedA is a dispensable protein, are limited by the absence of a true null allele for stoned due to partial restoration of presynaptic stonedA by transgenically provided stonedB. Careful analysis of the effects of the monocistronic transgenes together and in isolation clearly reveals that the presence of presynaptic stonedA is dependent on stonedB. Together, our findings improve understanding of the functional relationship between stonedA and stonedB and elaborate significantly on the in vivo functions of stonins, recently discovered phylogenetically conserved stonedB homologs that represent a new family of "orphan" medium (mu) chains of adaptor complexes involved in vesicle formation. Data presented here also provide new insight into potential mechanisms that underlie translation and evolution of the dicistronic stoned mRNA.

Full Text

The Full Text of this article is available as a PDF (359.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J., Smith M., Merakovsky J., Coulson M., Hannan F., Kelly L. E. The stoned locus of Drosophila melanogaster produces a dicistronic transcript and encodes two distinct polypeptides. Genetics. 1996 Aug;143(4):1699–1711. doi: 10.1093/genetics/143.4.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumenthal T. Gene clusters and polycistronic transcription in eukaryotes. Bioessays. 1998 Jun;20(6):480–487. doi: 10.1002/(SICI)1521-1878(199806)20:6<480::AID-BIES6>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  3. Blumenthal Thomas, Evans Donald, Link Christopher D., Guffanti Alessandro, Lawson Daniel, Thierry-Mieg Jean, Thierry-Mieg Danielle, Chiu Wei Lu, Duke Kyle, Kiraly Moni. A global analysis of Caenorhabditis elegans operons. Nature. 2002 Jun 20;417(6891):851–854. doi: 10.1038/nature00831. [DOI] [PubMed] [Google Scholar]
  4. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  5. Estes P. S., Ho G. L., Narayanan R., Ramaswami M. Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin--green fluorescent protein chimera in vivo. J Neurogenet. 2000 Jan;13(4):233–255. doi: 10.3109/01677060009084496. [DOI] [PubMed] [Google Scholar]
  6. Estes P. S., Roos J., van der Bliek A., Kelly R. B., Krishnan K. S., Ramaswami M. Traffic of dynamin within individual Drosophila synaptic boutons relative to compartment-specific markers. J Neurosci. 1996 Sep 1;16(17):5443–5456. doi: 10.1523/JNEUROSCI.16-17-05443.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fergestad T., Broadie K. Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci. 2001 Feb 15;21(4):1218–1227. doi: 10.1523/JNEUROSCI.21-04-01218.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fergestad T., Davis W. S., Broadie K. The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J Neurosci. 1999 Jul 15;19(14):5847–5860. doi: 10.1523/JNEUROSCI.19-14-05847.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lin D. M., Goodman C. S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron. 1994 Sep;13(3):507–523. doi: 10.1016/0896-6273(94)90022-1. [DOI] [PubMed] [Google Scholar]
  10. Littleton J. T., Serano T. L., Rubin G. M., Ganetzky B., Chapman E. R. Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature. 1999 Aug 19;400(6746):757–760. doi: 10.1038/23462. [DOI] [PubMed] [Google Scholar]
  11. Mackler J. M., Reist N. E. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions. J Comp Neurol. 2001 Jul 16;436(1):4–16. [PubMed] [Google Scholar]
  12. Manseau L., Baradaran A., Brower D., Budhu A., Elefant F., Phan H., Philp A. V., Yang M., Glover D., Kaiser K. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev Dyn. 1997 Jul;209(3):310–322. doi: 10.1002/(SICI)1097-0177(199707)209:3<310::AID-AJA6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  13. Maselli R. A., Kong D. Z., Bowe C. M., McDonald C. M., Ellis W. G., Agius M. A., Gomez C. M., Richman D. P., Wollmann R. L. Presynaptic congenital myasthenic syndrome due to quantal release deficiency. Neurology. 2001 Jul 24;57(2):279–289. doi: 10.1212/wnl.57.2.279. [DOI] [PubMed] [Google Scholar]
  14. Miklos G. L., Kelly L. E., Coombe P. E., Leeds C., Lefevre G. Localization of the genes shaking-B, small optic lobes, sluggish-A, stoned and stress-sensitive-C to a well-defined region on the X-chromosome of Drosophila melanogaster. J Neurogenet. 1987 Jan;4(1):1–19. doi: 10.3109/01677068709102329. [DOI] [PubMed] [Google Scholar]
  15. Phillips A. M., Smith M., Ramaswami M., Kelly L. E. The products of the Drosophila stoned locus interact with synaptic vesicles via synaptotagmin. J Neurosci. 2000 Nov 15;20(22):8254–8261. doi: 10.1523/JNEUROSCI.20-22-08254.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roos J., Hummel T., Ng N., Klämbt C., Davis G. W. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron. 2000 May;26(2):371–382. doi: 10.1016/s0896-6273(00)81170-8. [DOI] [PubMed] [Google Scholar]
  17. Sanyal Subhabrata, Ramaswami Mani. Spinsters, synaptic defects, and amaurotic idiocy. Neuron. 2002 Oct 24;36(3):335–338. doi: 10.1016/s0896-6273(02)01015-2. [DOI] [PubMed] [Google Scholar]
  18. Staples R. R., Ramaswami M. Functional analysis of dynamin isoforms in Drosophila melanogaster. J Neurogenet. 1999 Nov;13(3):119–143. doi: 10.3109/01677069909083470. [DOI] [PubMed] [Google Scholar]
  19. Stimson D. T., Estes P. S., Rao S., Krishnan K. S., Kelly L. E., Ramaswami M. Drosophila stoned proteins regulate the rate and fidelity of synaptic vesicle internalization. J Neurosci. 2001 May 1;21(9):3034–3044. doi: 10.1523/JNEUROSCI.21-09-03034.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stimson D. T., Estes P. S., Smith M., Kelly L. E., Ramaswami M. A product of the Drosophila stoned locus regulates neurotransmitter release. J Neurosci. 1998 Dec 1;18(23):9638–9649. doi: 10.1523/JNEUROSCI.18-23-09638.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Südhof Thomas C. Synaptotagmins: why so many? J Biol Chem. 2001 Dec 5;277(10):7629–7632. doi: 10.1074/jbc.R100052200. [DOI] [PubMed] [Google Scholar]
  22. Torroja L., Packard M., Gorczyca M., White K., Budnik V. The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. J Neurosci. 1999 Sep 15;19(18):7793–7803. doi: 10.1523/JNEUROSCI.19-18-07793.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Upadhyaya A. B., Lee S. H., DeJong J. Identification of a general transcription factor TFIIAalpha/beta homolog selectively expressed in testis. J Biol Chem. 1999 Jun 18;274(25):18040–18048. doi: 10.1074/jbc.274.25.18040. [DOI] [PubMed] [Google Scholar]
  24. Walther K., Krauss M., Diril M. K., Lemke S., Ricotta D., Honing S., Kaiser S., Haucke V. Human stoned B interacts with AP-2 and synaptotagmin and facilitates clathrin-coated vesicle uncoating. EMBO Rep. 2001 Jul 3;2(7):634–640. doi: 10.1093/embo-reports/kve134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zito K., Parnas D., Fetter R. D., Isacoff E. Y., Goodman C. S. Watching a synapse grow: noninvasive confocal imaging of synaptic growth in Drosophila. Neuron. 1999 Apr;22(4):719–729. doi: 10.1016/s0896-6273(00)80731-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES