Skip to main content
Genetics logoLink to Genetics
. 2003 Sep;165(1):299–307. doi: 10.1093/genetics/165.1.299

Undulated short-tail deletion mutation in the mouse ablates Pax1 and leads to ectopic activation of neighboring Nkx2-2 in domains that normally express Pax1.

Chikara Kokubu 1, Bettina Wilm 1, Tomoko Kokubu 1, Matthias Wahl 1, Isabel Rodrigo 1, Norio Sakai 1, Fabio Santagati 1, Yoshihide Hayashizaki 1, Misao Suzuki 1, Ken-Ichi Yamamura 1, Kuniya Abe 1, Kenji Imai 1
PMCID: PMC1462742  PMID: 14504237

Abstract

Previous studies have indicated that the Undulated short-tail deletion mutation in mouse Pax1 (Pax1(Un-s)) not only ablates Pax1, but also disturbs a gene or genes nearby Pax1. However, which gene(s) is involved and how the Pax1(Un-s) phenotype is confined to the Pax1-positive tissues remain unknown. In the present study, we determined the Pax1(Un-s) deletion interval to be 125 kb and characterized genes around Pax1. We show that the Pax1(Un-s) mutation affects four physically linked genes within or near the deletion, including Pax1, Nkx2-2, and their potential antisense genes. Remarkably, Nkx2-2 is ectopically activated in the sclerotome and limb buds of Pax1(Un-s) embryos, both of which normally express Pax1. This result suggests that the Pax1(Un-s) deletion leads to an illegitimate interaction between remotely located Pax1 enhancers and the Nkx2-2 promoter by disrupting an insulation mechanism between Pax1 and Nkx2-2. Furthermore, we show that expression of Bapx1, a downstream target of Pax1, is more strongly affected in Pax1(Un-s) mutants than in Pax1-null mutants, suggesting that the ectopic expression of Nkx2-2 interferes with the Pax1-Bapx1 pathway. Taken together, we propose that a combination of a loss-of-function mutation of Pax1 and a gain-of-function mutation of Nkx2-2 is the molecular basis of the Pax1(Un-s) mutation.

Full Text

The Full Text of this article is available as a PDF (262.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balling R., Deutsch U., Gruss P. undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax 1. Cell. 1988 Nov 4;55(3):531–535. doi: 10.1016/0092-8674(88)90039-6. [DOI] [PubMed] [Google Scholar]
  2. Blackwood E. M., Kadonaga J. T. Going the distance: a current view of enhancer action. Science. 1998 Jul 3;281(5373):60–63. doi: 10.1126/science.281.5373.60. [DOI] [PubMed] [Google Scholar]
  3. Briscoe J., Sussel L., Serup P., Hartigan-O'Connor D., Jessell T. M., Rubenstein J. L., Ericson J. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature. 1999 Apr 15;398(6728):622–627. doi: 10.1038/19315. [DOI] [PubMed] [Google Scholar]
  4. Carninci P., Shibata Y., Hayatsu N., Sugahara Y., Shibata K., Itoh M., Konno H., Okazaki Y., Muramatsu M., Hayashizaki Y. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. Genome Res. 2000 Oct;10(10):1617–1630. doi: 10.1101/gr.145100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahl E., Koseki H., Balling R. Pax genes and organogenesis. Bioessays. 1997 Sep;19(9):755–765. doi: 10.1002/bies.950190905. [DOI] [PubMed] [Google Scholar]
  6. Deutsch U., Dressler G. R., Gruss P. Pax 1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell. 1988 May 20;53(4):617–625. doi: 10.1016/0092-8674(88)90577-6. [DOI] [PubMed] [Google Scholar]
  7. Dietrich S., Gruss P. undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol. 1995 Feb;167(2):529–548. doi: 10.1006/dbio.1995.1047. [DOI] [PubMed] [Google Scholar]
  8. Eddy S. R. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001 Dec;2(12):919–929. doi: 10.1038/35103511. [DOI] [PubMed] [Google Scholar]
  9. Erdmann V. A., Barciszewska M. Z., Szymanski M., Hochberg A., de Groot N., Barciszewski J. The non-coding RNAs as riboregulators. Nucleic Acids Res. 2001 Jan 1;29(1):189–193. doi: 10.1093/nar/29.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Isegawa Y., Sheng J., Sokawa Y., Yamanishi K., Nakagomi O., Ueda S. Selective amplification of cDNA sequence from total RNA by cassette-ligation mediated polymerase chain reaction (PCR): application to sequencing 6.5 kb genome segment of hantavirus strain B-1. Mol Cell Probes. 1992 Dec;6(6):467–475. doi: 10.1016/0890-8508(92)90043-w. [DOI] [PubMed] [Google Scholar]
  11. Lettice L., Hecksher-Sørensen J., Hill R. The role of Bapx1 (Nkx3.2) in the development and evolution of the axial skeleton. J Anat. 2001 Jul-Aug;199(Pt 1-2):181–187. doi: 10.1046/j.1469-7580.2001.19910181.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mansouri A., Goudreau G., Gruss P. Pax genes and their role in organogenesis. Cancer Res. 1999 Apr 1;59(7 Suppl):1707s–1710s. [PubMed] [Google Scholar]
  13. McMahon A. P. Neural patterning: the role of Nkx genes in the ventral spinal cord. Genes Dev. 2000 Sep 15;14(18):2261–2264. doi: 10.1101/gad.840800. [DOI] [PubMed] [Google Scholar]
  14. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murtaugh L. C., Zeng L., Chyung J. H., Lassar A. B. The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell. 2001 Sep;1(3):411–422. doi: 10.1016/s1534-5807(01)00039-9. [DOI] [PubMed] [Google Scholar]
  16. Neubüser A., Koseki H., Balling R. Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev Biol. 1995 Aug;170(2):701–716. doi: 10.1006/dbio.1995.1248. [DOI] [PubMed] [Google Scholar]
  17. Price M., Lazzaro D., Pohl T., Mattei M. G., Rüther U., Olivo J. C., Duboule D., Di Lauro R. Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron. 1992 Feb;8(2):241–255. doi: 10.1016/0896-6273(92)90291-k. [DOI] [PubMed] [Google Scholar]
  18. Qi Y., Cai J., Wu Y., Wu R., Lee J., Fu H., Rao M., Sussel L., Rubenstein J., Qiu M. Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development. 2001 Jul;128(14):2723–2733. doi: 10.1242/dev.128.14.2723. [DOI] [PubMed] [Google Scholar]
  19. Rodrigo Isabel, Hill Robert E., Balling Rudi, Münsterberg Andrea, Imai Kenji. Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development. 2003 Feb;130(3):473–482. doi: 10.1242/dev.00240. [DOI] [PubMed] [Google Scholar]
  20. Sander M., Sussel L., Conners J., Scheel D., Kalamaras J., Dela Cruz F., Schwitzgebel V., Hayes-Jordan A., German M. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 2000 Dec;127(24):5533–5540. doi: 10.1242/dev.127.24.5533. [DOI] [PubMed] [Google Scholar]
  21. Soula C., Danesin C., Kan P., Grob M., Poncet C., Cochard P. Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development. 2001 Apr;128(8):1369–1379. doi: 10.1242/dev.128.8.1369. [DOI] [PubMed] [Google Scholar]
  22. Spörle R., Schughart K. Paradox segmentation along inter- and intrasomitic borderlines is followed by dysmorphology of the axial skeleton in the open brain (opb) mouse mutant. Dev Genet. 1998;22(4):359–373. doi: 10.1002/(SICI)1520-6408(1998)22:4<359::AID-DVG6>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  23. Storz Gisela. An expanding universe of noncoding RNAs. Science. 2002 May 17;296(5571):1260–1263. doi: 10.1126/science.1072249. [DOI] [PubMed] [Google Scholar]
  24. Tribioli C., Frasch M., Lufkin T. Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech Dev. 1997 Jul;65(1-2):145–162. doi: 10.1016/s0925-4773(97)00067-1. [DOI] [PubMed] [Google Scholar]
  25. Ulrich C. D., Consensus Committees of the European Registry of Hereditary Pancreatic Diseases, Midwest Multi-Center Pancreatic Study Group, International Association of Pancreatology Pancreatic cancer in hereditary pancreatitis: consensus guidelines for prevention, screening and treatment. Pancreatology. 2001;1(5):416–422. doi: 10.1159/000055841. [DOI] [PubMed] [Google Scholar]
  26. Wallin J., Eibel H., Neubüser A., Wilting J., Koseki H., Balling R. Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development. 1996 Jan;122(1):23–30. doi: 10.1242/dev.122.1.23. [DOI] [PubMed] [Google Scholar]
  27. Wallin J., Wilting J., Koseki H., Fritsch R., Christ B., Balling R. The role of Pax-1 in axial skeleton development. Development. 1994 May;120(5):1109–1121. doi: 10.1242/dev.120.5.1109. [DOI] [PubMed] [Google Scholar]
  28. Wilm B., Dahl E., Peters H., Balling R., Imai K. Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8692–8697. doi: 10.1073/pnas.95.15.8692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zeng Li, Kempf Hervé, Murtaugh L. Charles, Sato Mie Elissa, Lassar Andrew B. Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 2002 Aug 1;16(15):1990–2005. doi: 10.1101/gad.1008002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES