Abstract
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.
Full Text
The Full Text of this article is available as a PDF (341.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. doi: 10.1126/science.276.5313.726. [DOI] [PubMed] [Google Scholar]
- Baldi P., Chauvin Y., Hunkapiller T., McClure M. A. Hidden Markov models of biological primary sequence information. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1059–1063. doi: 10.1073/pnas.91.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanc G., Barakat A., Guyot R., Cooke R., Delseny M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell. 2000 Jul;12(7):1093–1101. doi: 10.1105/tpc.12.7.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. H., Feldman M. W., Nevo E. Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. Genetics. 1980 Oct;96(2):523–536. doi: 10.1093/genetics/96.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin D. B., Arroyo-Garcia R., Ochoa O. E., Kesseli R. V., Lavelle D. O., Michelmore R. W. Recombination and spontaneous mutation at the major cluster of resistance genes in lettuce (Lactuca sativa). Genetics. 2001 Feb;157(2):831–849. doi: 10.1093/genetics/157.2.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clay K., Kover P. X. The Red Queen Hypothesis and plant/pathogen interactions. Annu Rev Phytopathol. 1996;34:29–50. doi: 10.1146/annurev.phyto.34.1.29. [DOI] [PubMed] [Google Scholar]
- Dodds P. N., Lawrence G. J., Ellis J. G. Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J. 2001 Sep;27(5):439–453. doi: 10.1046/j.1365-313x.2001.01114.x. [DOI] [PubMed] [Google Scholar]
- Dubcovsky J., Ramakrishna W., SanMiguel P. J., Busso C. S., Yan L., Shiloff B. A., Bennetzen J. L. Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol. 2001 Mar;125(3):1342–1353. doi: 10.1104/pp.125.3.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallego F., Feuillet C., Messmer M., Penger A., Graner A., Yano M., Sasaki T., Keller B. Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome. 1998 Jun;41(3):328–336. doi: 10.1139/g98-024. [DOI] [PubMed] [Google Scholar]
- Gebhardt C., Valkonen J. P. Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol. 2001;39:79–102. doi: 10.1146/annurev.phyto.39.1.79. [DOI] [PubMed] [Google Scholar]
- Grant D., Cregan P., Shoemaker R. C. Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4168–4173. doi: 10.1073/pnas.070430597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grube R. C., Radwanski E. R., Jahn M. Comparative genetics of disease resistance within the solanaceae. Genetics. 2000 Jun;155(2):873–887. doi: 10.1093/genetics/155.2.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huala E., Dickerman A. W., Garcia-Hernandez M., Weems D., Reiser L., LaFond F., Hanley D., Kiphart D., Zhuang M., Huang W. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 2001 Jan 1;29(1):102–105. doi: 10.1093/nar/29.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hulbert S. H. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol. 1997;35:293–310. doi: 10.1146/annurev.phyto.35.1.293. [DOI] [PubMed] [Google Scholar]
- Hulbert S. H., Webb C. A., Smith S. M., Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol. 2001;39:285–312. doi: 10.1146/annurev.phyto.39.1.285. [DOI] [PubMed] [Google Scholar]
- Jelesko J. G., Harper R., Furuya M., Gruissem W. Rare germinal unequal crossing-over leading to recombinant gene formation and gene duplication in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10302–10307. doi: 10.1073/pnas.96.18.10302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics. 1998 Nov;150(3):1217–1228. doi: 10.1093/genetics/150.3.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leister D., Kurth J., Laurie D. A., Yano M., Sasaki T., Devos K., Graner A., Schulze-Lefert P. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):370–375. doi: 10.1073/pnas.95.1.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch M., Conery J. S. The evolutionary fate and consequences of duplicate genes. Science. 2000 Nov 10;290(5494):1151–1155. doi: 10.1126/science.290.5494.1151. [DOI] [PubMed] [Google Scholar]
- Lynch M., Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000 Jan;154(1):459–473. doi: 10.1093/genetics/154.1.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martinsohn J. T., Sousa A. B., Guethlein L. A., Howard J. C. The gene conversion hypothesis of MHC evolution: a review. Immunogenetics. 1999 Nov;50(3-4):168–200. doi: 10.1007/s002510050593. [DOI] [PubMed] [Google Scholar]
- Meyers B. C., Dickerman A. W., Michelmore R. W., Sivaramakrishnan S., Sobral B. W., Young N. D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999 Nov;20(3):317–332. doi: 10.1046/j.1365-313x.1999.t01-1-00606.x. [DOI] [PubMed] [Google Scholar]
- Mondragón-Palomino Mariana, Meyers Blake C., Michelmore Richard W., Gaut Brandon S. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res. 2002 Sep;12(9):1305–1315. doi: 10.1101/gr.159402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noël L., Moores T. L., van Der Biezen E. A., Parniske M., Daniels M. J., Parker J. E., Jones J. D. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell. 1999 Nov;11(11):2099–2112. [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Dover G. A. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4079–4083. doi: 10.1073/pnas.80.13.4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto Sarah P., Yong Paul. The evolution of gene duplicates. Adv Genet. 2002;46:451–483. doi: 10.1016/s0065-2660(02)46017-8. [DOI] [PubMed] [Google Scholar]
- Pan Q., Liu Y. S., Budai-Hadrian O., Sela M., Carmel-Goren L., Zamir D., Fluhr R. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Genetics. 2000 May;155(1):309–322. doi: 10.1093/genetics/155.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
- Richly Erik, Kurth Joachim, Leister Dario. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol. 2002 Jan;19(1):76–84. doi: 10.1093/oxfordjournals.molbev.a003984. [DOI] [PubMed] [Google Scholar]
- Said S. A. M., Fast J. H., Stassen C. M., Schepers-Bok R., Zijlstra J. J., Dankbaar H., van Driel B., Heijmans H. J. Percutaneous transvenous retrieval of intracardiac port-a-cath catheter fragment: a case report. Neth Heart J. 2004 Mar;12(3):117–120. [PMC free article] [PubMed] [Google Scholar]
- Schierup M. H., Hein J. Consequences of recombination on traditional phylogenetic analysis. Genetics. 2000 Oct;156(2):879–891. doi: 10.1093/genetics/156.2.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song W. Y., Pi L. Y., Wang G. L., Gardner J., Holsten T., Ronald P. C. Evolution of the rice Xa21 disease resistance gene family. Plant Cell. 1997 Aug;9(8):1279–1287. doi: 10.1105/tpc.9.8.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stahl E. A., Bishop J. G. Plant-pathogen arms races at the molecular level. Curr Opin Plant Biol. 2000 Aug;3(4):299–304. doi: 10.1016/s1369-5266(00)00083-2. [DOI] [PubMed] [Google Scholar]
- Stahl E. A., Dwyer G., Mauricio R., Kreitman M., Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature. 1999 Aug 12;400(6745):667–671. doi: 10.1038/23260. [DOI] [PubMed] [Google Scholar]
- Sun Q., Collins N. C., Ayliffe M., Smith S. M., Drake J., Pryor T., Hulbert S. H. Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics. 2001 May;158(1):423–438. doi: 10.1093/genetics/158.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahata N., Satta Y. Footprints of intragenic recombination at HLA loci. Immunogenetics. 1998 May;47(6):430–441. doi: 10.1007/s002510050380. [DOI] [PubMed] [Google Scholar]
- Vision T. J., Brown D. G., Tanksley S. D. The origins of genomic duplications in Arabidopsis. Science. 2000 Dec 15;290(5499):2114–2117. doi: 10.1126/science.290.5499.2114. [DOI] [PubMed] [Google Scholar]
- Walsh J. B. How many processed pseudogenes are accumulated in a gene family? Genetics. 1985 Jun;110(2):345–364. doi: 10.1093/genetics/110.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh J. B. How often do duplicated genes evolve new functions? Genetics. 1995 Jan;139(1):421–428. doi: 10.1093/genetics/139.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z., Taramino G., Yang D., Liu G., Tingey S. V., Miao G. H., Wang G. L. Rice ESTs with disease-resistance gene- or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics. 2001 Apr;265(2):302–310. doi: 10.1007/s004380000415. [DOI] [PubMed] [Google Scholar]
- Wilson W. A., Harrington S. E., Woodman W. L., Lee M., Sorrells M. E., McCouch S. R. Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics. 1999 Sep;153(1):453–473. doi: 10.1093/genetics/153.1.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiuf C., Hein J. The coalescent with gene conversion. Genetics. 2000 May;155(1):451–462. doi: 10.1093/genetics/155.1.451. [DOI] [PMC free article] [PubMed] [Google Scholar]