Skip to main content
Genetics logoLink to Genetics
. 2003 Sep;165(1):243–256. doi: 10.1093/genetics/165.1.243

Transposon mutagenesis of the mouse germline.

Corey M Carlson 1, Adam J Dupuy 1, Sabine Fritz 1, Kevin J Roberg-Perez 1, Colin F Fletcher 1, David A Largaespada 1
PMCID: PMC1462753  PMID: 14504232

Abstract

Sleeping Beauty is a synthetic "cut-and-paste" transposon of the Tc1/mariner class. The Sleeping Beauty transposase (SB) was constructed on the basis of a consensus sequence obtained from an alignment of 12 remnant elements cloned from the genomes of eight different fish species. Transposition of Sleeping Beauty elements has been observed in cultured cells, hepatocytes of adult mice, one-cell mouse embryos, and the germline of mice. SB has potential as a random germline insertional mutagen useful for in vivo gene trapping in mice. Previous work in our lab has demonstrated transposition in the male germline of mice and transmission of novel inserted transposons in offspring. To determine sequence preferences and mutagenicity of SB-mediated transposition, we cloned and analyzed 44 gene-trap transposon insertion sites from a panel of 30 mice. The distribution and sequence content flanking these cloned insertion sites was compared to 44 mock insertion sites randomly selected from the genome. We find that germline SB transposon insertion sites are AT-rich and the sequence ANNTANNT is favored compared to other TA dinucleotides. Local transposition occurs with insertions closely linked to the donor site roughly one-third of the time. We find that approximately 27% of the transposon insertions are in transcription units. Finally, we characterize an embryonic lethal mutation caused by endogenous splicing disruption in mice carrying a particular intron-inserted gene-trap transposon.

Full Text

The Full Text of this article is available as a PDF (610.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Clamp M., Andrews D., Barker D., Bevan P., Cameron G., Chen Y., Clark L., Cox T., Cuff J., Curwen V. Ensembl 2002: accommodating comparative genomics. Nucleic Acids Res. 2003 Jan 1;31(1):38–42. doi: 10.1093/nar/gkg083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dupuy A. J., Fritz S., Largaespada D. A. Transposition and gene disruption in the male germline of the mouse. Genesis. 2001 Jun;30(2):82–88. doi: 10.1002/gene.1037. [DOI] [PubMed] [Google Scholar]
  4. Dupuy Adam J., Clark Karl, Carlson Corey M., Fritz Sabine, Davidson Ann E., Markley Karra M., Finley Ken, Fletcher Colin F., Ekker Stephen C., Hackett Perry B. Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci U S A. 2002 Mar 19;99(7):4495–4499. doi: 10.1073/pnas.062630599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eide D., Anderson P. Transposition of Tc1 in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1756–1760. doi: 10.1073/pnas.82.6.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fischer S. E., Wienholds E., Plasterk R. H. Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci U S A. 2001 May 29;98(12):6759–6764. doi: 10.1073/pnas.121569298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gregory Simon G., Sekhon Mandeep, Schein Jacqueline, Zhao Shaying, Osoegawa Kazutoyo, Scott Carol E., Evans Richard S., Burridge Paul W., Cox Tony V., Fox Christopher A. A physical map of the mouse genome. Nature. 2002 Aug 4;418(6899):743–750. doi: 10.1038/nature00957. [DOI] [PubMed] [Google Scholar]
  8. Hartl D. Discovery of the transposable element mariner. Genetics. 2001 Feb;157(2):471–476. doi: 10.1093/genetics/157.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heng H. H., Tsui L. C. Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma. 1993 May;102(5):325–332. doi: 10.1007/BF00661275. [DOI] [PubMed] [Google Scholar]
  10. Hrabé de Angelis M. H., Flaswinkel H., Fuchs H., Rathkolb B., Soewarto D., Marschall S., Heffner S., Pargent W., Wuensch K., Jung M. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet. 2000 Aug;25(4):444–447. doi: 10.1038/78146. [DOI] [PubMed] [Google Scholar]
  11. Hubbard T., Barker D., Birney E., Cameron G., Chen Y., Clark L., Cox T., Cuff J., Curwen V., Down T. The Ensembl genome database project. Nucleic Acids Res. 2002 Jan 1;30(1):38–41. doi: 10.1093/nar/30.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ivics Z., Hackett P. B., Plasterk R. H., Izsvák Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997 Nov 14;91(4):501–510. doi: 10.1016/s0092-8674(00)80436-5. [DOI] [PubMed] [Google Scholar]
  13. Izsvák Z., Ivics Z., Plasterk R. H. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol. 2000 Sep 8;302(1):93–102. doi: 10.1006/jmbi.2000.4047. [DOI] [PubMed] [Google Scholar]
  14. Jenkins N. A., Copeland N. G., Taylor B. A., Bedigian H. G., Lee B. K. Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J Virol. 1982 May;42(2):379–388. doi: 10.1128/jvi.42.2.379-388.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Justice M. J., Carpenter D. A., Favor J., Neuhauser-Klaus A., Hrabé de Angelis M., Soewarto D., Moser A., Cordes S., Miller D., Chapman V. Effects of ENU dosage on mouse strains. Mamm Genome. 2000 Jul;11(7):484–488. doi: 10.1007/s003350010094. [DOI] [PubMed] [Google Scholar]
  16. Kisseberth W. C., Brettingen N. T., Lohse J. K., Sandgren E. P. Ubiquitous expression of marker transgenes in mice and rats. Dev Biol. 1999 Oct 1;214(1):128–138. doi: 10.1006/dbio.1999.9417. [DOI] [PubMed] [Google Scholar]
  17. Liao G. C., Rehm E. J., Rubin G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3347–3351. doi: 10.1073/pnas.050017397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Luo G., Ivics Z., Izsvák Z., Bradley A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10769–10773. doi: 10.1073/pnas.95.18.10769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Medhora M., Maruyama K., Hartl D. L. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics. 1991 Jun;128(2):311–318. doi: 10.1093/genetics/128.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
  21. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  22. Palmieri F. Mitochondrial carrier proteins. FEBS Lett. 1994 Jun 6;346(1):48–54. doi: 10.1016/0014-5793(94)00329-7. [DOI] [PubMed] [Google Scholar]
  23. Pelicic V., Morelle S., Lampe D., Nassif X. Mutagenesis of Neisseria meningitidis by in vitro transposition of Himar1 mariner. J Bacteriol. 2000 Oct;182(19):5391–5398. doi: 10.1128/jb.182.19.5391-5398.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Plasterk R. H., Izsvák Z., Ivics Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 1999 Aug;15(8):326–332. doi: 10.1016/s0168-9525(99)01777-1. [DOI] [PubMed] [Google Scholar]
  25. Roberg-Perez Kevin, Carlson Corey M., Largaespada David A. MTID: a database of Sleeping Beauty transposon insertions in mice. Nucleic Acids Res. 2003 Jan 1;31(1):78–81. doi: 10.1093/nar/gkg045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schäffer A. A., Aravind L., Madden T. L., Shavirin S., Spouge J. L., Wolf Y. I., Koonin E. V., Altschul S. F. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 2001 Jul 15;29(14):2994–3005. doi: 10.1093/nar/29.14.2994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Skarnes W. C., Auerbach B. A., Joyner A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 1992 Jun;6(6):903–918. doi: 10.1101/gad.6.6.903. [DOI] [PubMed] [Google Scholar]
  28. Stajich Jason E., Block David, Boulez Kris, Brenner Steven E., Chervitz Stephen A., Dagdigian Chris, Fuellen Georg, Gilbert James G. R., Korf Ian, Lapp Hilmar. The Bioperl toolkit: Perl modules for the life sciences. Genome Res. 2002 Oct;12(10):1611–1618. doi: 10.1101/gr.361602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tower J., Karpen G. H., Craig N., Spradling A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. doi: 10.1093/genetics/133.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vigdal Thomas J., Kaufman Christopher D., Izsvák Zsuzsanna, Voytas Daniel F., Ivics Zoltán. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol. 2002 Oct 25;323(3):441–452. doi: 10.1016/s0022-2836(02)00991-9. [DOI] [PubMed] [Google Scholar]
  31. Yant S. R., Meuse L., Chiu W., Ivics Z., Izsvak Z., Kay M. A. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet. 2000 May;25(1):35–41. doi: 10.1038/75568. [DOI] [PubMed] [Google Scholar]
  32. van Luenen H. G., Colloms S. D., Plasterk R. H. Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase. EMBO J. 1993 Jun;12(6):2513–2520. doi: 10.1002/j.1460-2075.1993.tb05906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Luenen H. G., Plasterk R. H. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res. 1994 Feb 11;22(3):262–269. doi: 10.1093/nar/22.3.262. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES