Skip to main content
Genetics logoLink to Genetics
. 2003 Sep;165(1):23–33. doi: 10.1093/genetics/165.1.23

Analysis of the generation and segregation of propagons: entities that propagate the [PSI+] prion in yeast.

Brian Cox 1, Frederique Ness 1, Mick Tuite 1
PMCID: PMC1462756  PMID: 14504215

Abstract

The propagation of the prion form of the yeast Sup35p protein, the so-called [PSI(+)] determinant, involves the generation and partition of a small number of particulate determinants that we propose calling "propagons." The numbers of propagons in [PSI(+)] cells can be inferred from the kinetics of elimination of [PSI(+)] during growth in the presence of a low concentration of guanidine hydrochloride (GdnHCl). Using this and an alternative method of counting the numbers of propagons, we demonstrate considerable clonal variation in the apparent numbers of propagons between different [PSI(+)] yeast strains, between different cultures of the same [PSI(+)] yeast strain, and between different cells of the same [PSI(+)] culture. We provide further evidence that propagon generation is blocked by growth in GdnHCl and that it is largely confined to the S phase of the cell cycle. In addition, we show that at low propagon number there is a bias toward retention of propagons in mother cells and that production of new propagons is very rapid when cells with depleted numbers of propagons are rescued into normal growth medium. The implications of our findings with respect to yeast prion propagation mechanisms are discussed.

Full Text

The Full Text of this article is available as a PDF (165.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DePace A. H., Santoso A., Hillner P., Weissman J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell. 1998 Jun 26;93(7):1241–1252. doi: 10.1016/s0092-8674(00)81467-1. [DOI] [PubMed] [Google Scholar]
  2. Derkatch I. L., Bradley M. E., Zhou P., Chernoff Y. O., Liebman S. W. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):507–519. doi: 10.1093/genetics/147.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Didichenko S. A., Ter-Avanesyan M. D., Smirnov V. N. Ribosome-bound EF-1 alpha-like protein of yeast Saccharomyces cerevisiae. Eur J Biochem. 1991 Jun 15;198(3):705–711. doi: 10.1111/j.1432-1033.1991.tb16070.x. [DOI] [PubMed] [Google Scholar]
  4. Doel S. M., McCready S. J., Nierras C. R., Cox B. S. The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics. 1994 Jul;137(3):659–670. doi: 10.1093/genetics/137.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eaglestone S. S., Ruddock L. W., Cox B. S., Tuite M. F. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):240–244. doi: 10.1073/pnas.97.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ferreira P. C., Ness F., Edwards S. R., Cox B. S., Tuite M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol. 2001 Jun;40(6):1357–1369. doi: 10.1046/j.1365-2958.2001.02478.x. [DOI] [PubMed] [Google Scholar]
  7. Jung G., Masison D. C. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol. 2001 Jul;43(1):7–10. doi: 10.1007/s002840010251. [DOI] [PubMed] [Google Scholar]
  8. Liu J. J., Lindquist S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature. 1999 Aug 5;400(6744):573–576. doi: 10.1038/23048. [DOI] [PubMed] [Google Scholar]
  9. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ness Frédérique, Ferreira Paulo, Cox Brian S., Tuite Mick F. Guanidine hydrochloride inhibits the generation of prion "seeds" but not prion protein aggregation in yeast. Mol Cell Biol. 2002 Aug;22(15):5593–5605. doi: 10.1128/MCB.22.15.5593-5605.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Parham S. N., Resende C. G., Tuite M. F. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 2001 May 1;20(9):2111–2119. doi: 10.1093/emboj/20.9.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 1996 Jun 17;15(12):3127–3134. [PMC free article] [PubMed] [Google Scholar]
  13. Prusiner S. B., Scott M. R., DeArmond S. J., Cohen F. E. Prion protein biology. Cell. 1998 May 1;93(3):337–348. doi: 10.1016/s0092-8674(00)81163-0. [DOI] [PubMed] [Google Scholar]
  14. Serio T. R., Lindquist S. L. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 2000 Mar;10(3):98–105. doi: 10.1016/s0962-8924(99)01711-0. [DOI] [PubMed] [Google Scholar]
  15. Serio T. R., Lindquist S. L. [PSI+]: an epigenetic modulator of translation termination efficiency. Annu Rev Cell Dev Biol. 1999;15:661–703. doi: 10.1146/annurev.cellbio.15.1.661. [DOI] [PubMed] [Google Scholar]
  16. Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G., Smirnov V. N. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol. 1993 Mar;7(5):683–692. doi: 10.1111/j.1365-2958.1993.tb01159.x. [DOI] [PubMed] [Google Scholar]
  17. Tuite M. F., Mundy C. R., Cox B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics. 1981 Aug;98(4):691–711. doi: 10.1093/genetics/98.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Uptain S. M., Sawicki G. J., Caughey B., Lindquist S. Strains of [PSI(+)] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 2001 Nov 15;20(22):6236–6245. doi: 10.1093/emboj/20.22.6236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wegrzyn R. D., Bapat K., Newnam G. P., Zink A. D., Chernoff Y. O. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol. 2001 Jul;21(14):4656–4669. doi: 10.1128/MCB.21.14.4656-4669.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wickner R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science. 1994 Apr 22;264(5158):566–569. doi: 10.1126/science.7909170. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES