Abstract
In Drosophila oocytes, euchromatic homolog-homolog associations are released at the end of pachytene, while heterochromatic pairings persist until metaphase I. A screen of 123 autosomal deficiencies for dominant effects on achiasmate chromosome segregation has identified a single gene that is haplo-insufficient for homologous achiasmate segregation and whose product may be required for the maintenance of such heterochromatic pairings. Of the deficiencies tested, only one exhibited a strong dominant effect on achiasmate segregation, inducing both X and fourth chromosome nondisjunction in FM7/X females. Five overlapping deficiencies showed a similar dominant effect on achiasmate chromosome disjunction and mapped the haplo-insufficient meiotic gene to a small interval within 66C7-12. A P-element insertion mutation in this interval exhibits a similar dominant effect on achiasmate segregation, inducing both high levels of X and fourth chromosome nondisjunction in FM7/X females and high levels of fourth chromosome nondisjunction in X/X females. The insertion site for this P element lies immediately upstream of CG18543, and germline expression of a UAS-CG18543 cDNA construct driven by nanos-GAL4 fully rescues the dominant meiotic defect. We conclude that CG18543 is the haplo-insufficient gene and have renamed this gene matrimony (mtrm). Cytological studies of prometaphase and metaphase I in mtrm hemizygotes demonstrate that achiasmate chromosomes are not properly positioned with respect to their homolog on the meiotic spindle. One possible, albeit speculative, interpretation of these data is that the presence of only a single copy of mtrm disrupts the function of whatever "glue" holds heterochromatically paired homologs together from the end of pachytene until metaphase I.
Full Text
The Full Text of this article is available as a PDF (242.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afshar K., Barton N. R., Hawley R. S., Goldstein L. S. DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell. 1995 Apr 7;81(1):129–138. doi: 10.1016/0092-8674(95)90377-1. [DOI] [PubMed] [Google Scholar]
- Afshar K., Scholey J., Hawley R. S. Identification of the chromosome localization domain of the Drosophila nod kinesin-like protein. J Cell Biol. 1995 Nov;131(4):833–843. doi: 10.1083/jcb.131.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arbeitman Michelle N., Furlong Eileen E. M., Imam Farhad, Johnson Eric, Null Brian H., Baker Bruce S., Krasnow Mark A., Scott Matthew P., Davis Ronald W., White Kevin P. Gene expression during the life cycle of Drosophila melanogaster. Science. 2002 Sep 27;297(5590):2270–2275. doi: 10.1126/science.1072152. [DOI] [PubMed] [Google Scholar]
- Carpenter A. T. A meiotic mutant defective in distributive disjunction in Drosophila melanogaster. Genetics. 1973 Mar;73(3):393–428. doi: 10.1093/genetics/73.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter A. T. Synaptonemal complex and recombination nodules in wild-type Drosophila melanogaster females. Genetics. 1979 Jun;92(2):511–541. doi: 10.1093/genetics/92.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dernburg A. F., Sedat J. W., Hawley R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996 Jul 12;86(1):135–146. doi: 10.1016/s0092-8674(00)80084-7. [DOI] [PubMed] [Google Scholar]
- Giunta Kelly L., Jang Janet K., Manheim Elizabeth A., Subramanian Gayathri, McKim Kim S. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics. 2002 Apr;160(4):1489–1501. doi: 10.1093/genetics/160.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giunta Kelly L., Jang Janet K., Manheim Elizabeth A., Subramanian Gayathri, McKim Kim S. subito encodes a kinesin-like protein required for meiotic spindle pole formation in Drosophila melanogaster. Genetics. 2002 Apr;160(4):1489–1501. doi: 10.1093/genetics/160.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halsell S. R., Kiehart D. P. Second-site noncomplementation identifies genomic regions required for Drosophila nonmuscle myosin function during morphogenesis. Genetics. 1998 Apr;148(4):1845–1863. doi: 10.1093/genetics/148.4.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawley R. S., Irick H., Zitron A. E., Haddox D. A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. doi: 10.1002/dvg.1020130608. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., Theurkauf W. E. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 1993 Sep;9(9):310–317. doi: 10.1016/0168-9525(93)90249-h. [DOI] [PubMed] [Google Scholar]
- Karpen G. H., Le M. H., Le H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science. 1996 Jul 5;273(5271):118–122. doi: 10.1126/science.273.5271.118. [DOI] [PubMed] [Google Scholar]
- Kimble M., Church K. Meiosis and early cleavage in Drosophila melanogaster eggs: effects of the claret-non-disjunctional mutation. J Cell Sci. 1983 Jul;62:301–318. doi: 10.1242/jcs.62.1.301. [DOI] [PubMed] [Google Scholar]
- Komma D. J., Horne A. S., Endow S. A. Separation of meiotic and mitotic effects of claret non-disjunctional on chromosome segregation in Drosophila. EMBO J. 1991 Feb;10(2):419–424. doi: 10.1002/j.1460-2075.1991.tb07963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee L. A., Elfring L. K., Bosco G., Orr-Weaver T. L. A genetic screen for suppressors and enhancers of the Drosophila PAN GU cell cycle kinase identifies cyclin B as a target. Genetics. 2001 Aug;158(4):1545–1556. doi: 10.1093/genetics/158.4.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manheim Elizabeth A., McKim Kim S. The Synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila. Curr Biol. 2003 Feb 18;13(4):276–285. doi: 10.1016/s0960-9822(03)00050-2. [DOI] [PubMed] [Google Scholar]
- Matthies H. J., Baskin R. J., Hawley R. S. Orphan kinesin NOD lacks motile properties but does possess a microtubule-stimulated ATPase activity. Mol Biol Cell. 2001 Dec;12(12):4000–4012. doi: 10.1091/mbc.12.12.4000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthies H. J., McDonald H. B., Goldstein L. S., Theurkauf W. E. Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J Cell Biol. 1996 Jul;134(2):455–464. doi: 10.1083/jcb.134.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthies H. J., Messina L. G., Namba R., Greer K. J., Walker M. Y., Hawley R. S. Mutations in the alpha-tubulin 67C gene specifically impair achiasmate segregation in Drosophila melanogaster. J Cell Biol. 1999 Dec 13;147(6):1137–1144. doi: 10.1083/jcb.147.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKim K. S., Green-Marroquin B. L., Sekelsky J. J., Chin G., Steinberg C., Khodosh R., Hawley R. S. Meiotic synapsis in the absence of recombination. Science. 1998 Feb 6;279(5352):876–878. doi: 10.1126/science.279.5352.876. [DOI] [PubMed] [Google Scholar]
- Murphy T. D., Karpen G. H. Localization of centromere function in a Drosophila minichromosome. Cell. 1995 Aug 25;82(4):599–609. doi: 10.1016/0092-8674(95)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murthy Mala, Garza Dan, Scheller Richard H., Schwarz Thomas L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron. 2003 Feb 6;37(3):433–447. doi: 10.1016/s0896-6273(03)00031-x. [DOI] [PubMed] [Google Scholar]
- Nicklas R. B. Chromosome segregation mechanisms. Genetics. 1974 Sep;78(1):205–213. doi: 10.1093/genetics/78.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Tousa J. Meiotic chromosome behavior influenced by mutation-altered disjunction in Drosophila melanogaster females. Genetics. 1982 Nov;102(3):503–524. doi: 10.1093/genetics/102.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page Jesús, Berríos Soledad, Rufas Julio S., Parra M. Teresa, Suja José A., Heyting Christa, Fernández-Donoso Raúl. The pairing of X and Y chromosomes during meiotic prophase in the marsupial species Thylamys elegans is maintained by a dense plate developed from their axial elements. J Cell Sci. 2003 Feb 1;116(Pt 3):551–560. doi: 10.1242/jcs.00252. [DOI] [PubMed] [Google Scholar]
- Page Scott L., Hawley R. Scott. Chromosome choreography: the meiotic ballet. Science. 2003 Aug 8;301(5634):785–789. doi: 10.1126/science.1086605. [DOI] [PubMed] [Google Scholar]
- Rasmussen S. W. The transformation of the Synaptonemal Complex into the 'elimination chromatin' in Bombyx mori oocytes. Chromosoma. 1977 Apr 19;60(3):205–221. doi: 10.1007/BF00329771. [DOI] [PubMed] [Google Scholar]
- Rasooly R. S., New C. M., Zhang P., Hawley R. S., Baker B. S. The lethal(1)TW-6cs mutation of Drosophila melanogaster is a dominant antimorphic allele of nod and is associated with a single base change in the putative ATP-binding domain. Genetics. 1991 Oct;129(2):409–422. doi: 10.1093/genetics/129.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins L. G. Maternal-zygotic lethal interactions in Drosophila melanogaster: the effects of deficiencies in the zeste-white region of the X chromosome. Genetics. 1980 Sep;96(1):187–200. doi: 10.1093/genetics/96.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins L. G. The meiotic behavior of some single-cistron mutants in the zeste-white region of the Drosophila melanogaster X chromosome. Mol Gen Genet. 1981;183(2):214–219. doi: 10.1007/BF00270620. [DOI] [PubMed] [Google Scholar]
- Robbins L. G. The meiotic effect of a deficiency in Drosophila melanogaster with a model for the effects of enzyme deficiency on recombination. Genetics. 1977 Dec;87(4):655–684. doi: 10.1093/genetics/87.4.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler L, Novitski E. Evidence for Genetic Homology between Chromosomes I and IV in Drosophila Melanogaster, with a Proposed Explanation for the Crowding Effect in Triploids. Genetics. 1956 Mar;41(2):189–193. doi: 10.1093/genetics/41.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sekelsky J. J., McKim K. S., Messina L., French R. L., Hurley W. D., Arbel T., Chin G. M., Deneen B., Force S. J., Hari K. L. Identification of novel Drosophila meiotic genes recovered in a P-element screen. Genetics. 1999 Jun;152(2):529–542. doi: 10.1093/genetics/152.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Doren M., Williamson A. L., Lehmann R. Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol. 1998 Feb 12;8(4):243–246. doi: 10.1016/s0960-9822(98)70091-0. [DOI] [PubMed] [Google Scholar]
- Wald H. Cytologic Studies on the Abnormal Development of the Eggs of the Claret Mutant Type of Drosophila Simulans. Genetics. 1936 May;21(3):264–281. doi: 10.1093/genetics/21.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wasser Martin, Chia William. The Drosophila EAST protein associates with a nuclear remnant during mitosis and constrains chromosome mobility. J Cell Sci. 2003 May 1;116(Pt 9):1733–1743. doi: 10.1242/jcs.00379. [DOI] [PubMed] [Google Scholar]
- Wolf K. W. How meiotic cells deal with non-exchange chromosomes. Bioessays. 1994 Feb;16(2):107–114. doi: 10.1002/bies.950160207. [DOI] [PubMed] [Google Scholar]
- Zhang P., Knowles B. A., Goldstein L. S., Hawley R. S. A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell. 1990 Sep 21;62(6):1053–1062. doi: 10.1016/0092-8674(90)90383-p. [DOI] [PubMed] [Google Scholar]
- Zitron A. E., Hawley R. S. The genetic analysis of distributive segregation in Drosophila melanogaster. I. Isolation and characterization of Aberrant X segregation (Axs), a mutation defective in chromosome partner choice. Genetics. 1989 Aug;122(4):801–821. doi: 10.1093/genetics/122.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]