Skip to main content
Genetics logoLink to Genetics
. 2003 Oct;165(2):457–466. doi: 10.1093/genetics/165.2.457

Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination.

M García-Rubio 1, P Huertas 1, S González-Barrera 1, A Aguilera 1
PMCID: PMC1462770  PMID: 14573461

Abstract

Homologous recombination of a particular DNA sequence is strongly stimulated by transcription, a phenomenon observed from bacteria to mammals, which we refer to as transcription-associated recombination (TAR). TAR might be an accidental feature of DNA chemistry with important consequences for genetic stability. However, it is also essential for developmentally regulated processes such as class switching of immunoglobulin genes. Consequently, it is likely that TAR embraces more than one mechanism. In this study we tested the possibility that transcription induces recombination by making DNA more susceptible to recombinogenic DNA damage. Using different plasmid-chromosome and direct-repeat recombination constructs in which transcription is driven from either the P(GAL1)- or the P(tet)-regulated promoters, we have shown that either 4-nitroquinoline-N-oxide (4-NQO) or methyl methanesulfonate (MMS) produces a synergistic increase of recombination when combined with transcription. 4-NQO and MMS stimulated recombination of a transcriptionally active DNA sequence up to 12,800- and 130-fold above the spontaneous levels observed in the absence of transcription, whereas 4-NQO and MMS alone increased recombination 193- and 4.5-fold, respectively. Our results provide evidence that TAR is due, at least in part, to the ability of transcription to enhance the accessibility of DNA to exogenous chemicals and internal metabolites responsible for recombinogenic lesions. We discuss possible parallelisms between the mechanisms of induction of recombination and mutation by transcription.

Full Text

The Full Text of this article is available as a PDF (282.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera Andrés. The connection between transcription and genomic instability. EMBO J. 2002 Feb 1;21(3):195–201. doi: 10.1093/emboj/21.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alseth I., Eide L., Pirovano M., Rognes T., Seeberg E., Bjørås M. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol Cell Biol. 1999 May;19(5):3779–3787. doi: 10.1128/mcb.19.5.3779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beletskii A., Bhagwat A. S. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13919–13924. doi: 10.1073/pnas.93.24.13919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beletskii A., Grigoriev A., Joyce S., Bhagwat A. S. Mutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome. J Mol Biol. 2000 Jul 28;300(5):1057–1065. doi: 10.1006/jmbi.2000.3944. [DOI] [PubMed] [Google Scholar]
  5. Brock R. D. Differential mutation of the beta-galactosidase gene of Escherichia coli. Mutat Res. 1971 Feb;11(2):181–186. [PubMed] [Google Scholar]
  6. Chávez S., Beilharz T., Rondón A. G., Erdjument-Bromage H., Tempst P., Svejstrup J. Q., Lithgow T., Aguilera A. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 2000 Nov 1;19(21):5824–5834. doi: 10.1093/emboj/19.21.5824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniels G. A., Lieber M. R. RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination. Nucleic Acids Res. 1995 Dec 25;23(24):5006–5011. doi: 10.1093/nar/23.24.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Darroudi F., Natarajan A. T., Lohman P. H. Cytogenetical characterization of UV-sensitive repair-deficient CHO cell line 43-3B. II. Induction of cell killing, chromosomal aberrations and sister-chromatid exchanges by 4NQO, mono- and bi-functional alkylating agents. Mutat Res. 1989 Jun;212(2):103–112. doi: 10.1016/0027-5107(89)90061-4. [DOI] [PubMed] [Google Scholar]
  9. Datta A., Jinks-Robertson S. Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science. 1995 Jun 16;268(5217):1616–1619. doi: 10.1126/science.7777859. [DOI] [PubMed] [Google Scholar]
  10. Dul J. L., Drexler H. Transcription stimulates recombination. II. Generalized transduction of Escherichia coli by phages T1 and T4. Virology. 1988 Feb;162(2):471–477. doi: 10.1016/0042-6822(88)90489-8. [DOI] [PubMed] [Google Scholar]
  11. Eide L., Bjørås M., Pirovano M., Alseth I., Berdal K. G., Seeberg E. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10735–10740. doi: 10.1073/pnas.93.20.10735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fix D. F., Glickman B. W. Asymmetric cytosine deamination revealed by spontaneous mutational specificity in an Ung- strain of Escherichia coli. Mol Gen Genet. 1987 Aug;209(1):78–82. doi: 10.1007/BF00329839. [DOI] [PubMed] [Google Scholar]
  13. Frederico L. A., Kunkel T. A., Shaw B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry. 1990 Mar 13;29(10):2532–2537. doi: 10.1021/bi00462a015. [DOI] [PubMed] [Google Scholar]
  14. Friedman B. M., Yasbin R. E. The genetics and specificity of the constitutive excision repair system of Bacillus subtilis. Mol Gen Genet. 1983;190(3):481–486. doi: 10.1007/BF00331080. [DOI] [PubMed] [Google Scholar]
  15. Gallardo M., Aguilera A. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination. Genetics. 2001 Jan;157(1):79–89. doi: 10.1093/genetics/157.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Garí E., Piedrafita L., Aldea M., Herrero E. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast. 1997 Jul;13(9):837–848. doi: 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  17. González-Barrera Sergio, García-Rubio María, Aguilera Andrés. Transcription and double-strand breaks induce similar mitotic recombination events in Saccharomyces cerevisiae. Genetics. 2002 Oct;162(2):603–614. doi: 10.1093/genetics/162.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herman R. K., Dworkin N. B. Effect of gene induction on the rate of mutagenesis by ICR-191 in Escherichia coli. J Bacteriol. 1971 May;106(2):543–550. doi: 10.1128/jb.106.2.543-550.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jimeno S., Rondón A. G., Luna R., Aguilera A. The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J. 2002 Jul 1;21(13):3526–3535. doi: 10.1093/emboj/cdf335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jones K. A., Kadonaga J. T. Exploring the transcription-chromatin interface. Genes Dev. 2000 Aug 15;14(16):1992–1996. [PubMed] [Google Scholar]
  21. Morey N. J., Greene C. N., Jinks-Robertson S. Genetic analysis of transcription-associated mutation in Saccharomyces cerevisiae. Genetics. 2000 Jan;154(1):109–120. doi: 10.1093/genetics/154.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nagao M., Sugimura T. Molecular biology of the carcinogen, 4-nitroquinoline 1-oxide. Adv Cancer Res. 1976;23:131–169. doi: 10.1016/s0065-230x(08)60545-x. [DOI] [PubMed] [Google Scholar]
  23. Nash H. M., Bruner S. D., Schärer O. D., Kawate T., Addona T. A., Spooner E., Lane W. S., Verdine G. L. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996 Aug 1;6(8):968–980. doi: 10.1016/s0960-9822(02)00641-3. [DOI] [PubMed] [Google Scholar]
  24. Nickoloff J. A. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol. 1992 Dec;12(12):5311–5318. doi: 10.1128/mcb.12.12.5311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Orphanides G., Reinberg D. RNA polymerase II elongation through chromatin. Nature. 2000 Sep 28;407(6803):471–475. doi: 10.1038/35035000. [DOI] [PubMed] [Google Scholar]
  26. Paterson M. C., Gentner N. E., Middlestadt M. V., Weinfeld M. Cancer predisposition, carcinogen hypersensitivity, and aberrant DNA metabolism. J Cell Physiol Suppl. 1984;3:45–62. doi: 10.1002/jcp.1041210408. [DOI] [PubMed] [Google Scholar]
  27. Pine R., Huang P. C. An improved method to obtain a large number of mutants in a defined region of DNA. Methods Enzymol. 1987;154:415–430. doi: 10.1016/0076-6879(87)54088-5. [DOI] [PubMed] [Google Scholar]
  28. Piruat J. I., Aguilera A. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 1998 Aug 17;17(16):4859–4872. doi: 10.1093/emboj/17.16.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Prado F., Aguilera A. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Genetics. 1995 Jan;139(1):109–123. doi: 10.1093/genetics/139.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Prado F., Piruat J. I., Aguilera A. Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. EMBO J. 1997 May 15;16(10):2826–2835. doi: 10.1093/emboj/16.10.2826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Prado Félix, Cortés-Ledesma Felipe, Huertas Pablo, Aguilera Andrés. Mitotic recombination in Saccharomyces cerevisiae. Curr Genet. 2002 Nov 29;42(4):185–198. doi: 10.1007/s00294-002-0346-3. [DOI] [PubMed] [Google Scholar]
  32. Prakash S., Prakash L. Nucleotide excision repair in yeast. Mutat Res. 2000 Jun 30;451(1-2):13–24. doi: 10.1016/s0027-5107(00)00037-3. [DOI] [PubMed] [Google Scholar]
  33. Pâques F., Haber J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999 Jun;63(2):349–404. doi: 10.1128/mmbr.63.2.349-404.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ramotar D., Popoff S. C., Gralla E. B., Demple B. Cellular role of yeast Apn1 apurinic endonuclease/3'-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol. 1991 Sep;11(9):4537–4544. doi: 10.1128/mcb.11.9.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reagan M. S., Friedberg E. C. Recovery of RNA polymerase II synthesis following DNA damage in mutants of Saccharomyces cerevisiae defective in nucleotide excision repair. Nucleic Acids Res. 1997 Nov 1;25(21):4257–4263. doi: 10.1093/nar/25.21.4257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Saffran W. A., Greenberg R. B., Thaler-Scheer M. S., Jones M. M. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Nucleic Acids Res. 1994 Jul 25;22(14):2823–2829. doi: 10.1093/nar/22.14.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saxe D., Datta A., Jinks-Robertson S. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol. 2000 Aug;20(15):5404–5414. doi: 10.1128/mcb.20.15.5404-5414.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sikes Michael L., Meade Amber, Tripathi Rajkamal, Krangel Michael S., Oltz Eugene M. Regulation of V(D)J recombination: a dominant role for promoter positioning in gene segment accessibility. Proc Natl Acad Sci U S A. 2002 Aug 26;99(19):12309–12314. doi: 10.1073/pnas.182166699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stavnezer-Nordgren J., Sirlin S. Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J. 1986 Jan;5(1):95–102. doi: 10.1002/j.1460-2075.1986.tb04182.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sternglanz R., DiNardo S., Voelkel K. A., Nishimura Y., Hirota Y., Becherer K., Zumstein L., Wang J. C. Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci U S A. 1981 May;78(5):2747–2751. doi: 10.1073/pnas.78.5.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Swanson R. L., Morey N. J., Doetsch P. W., Jinks-Robertson S. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Apr;19(4):2929–2935. doi: 10.1128/mcb.19.4.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  43. Tijsterman M., Verhage R. A., van de Putte P., Tasseron-de Jong J. G., Brouwer J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8027–8032. doi: 10.1073/pnas.94.15.8027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Voelkel-Meiman K., Keil R. L., Roeder G. S. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell. 1987 Mar 27;48(6):1071–1079. doi: 10.1016/0092-8674(87)90714-8. [DOI] [PubMed] [Google Scholar]
  45. Wright B. E. A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol. 2000 Jun;182(11):2993–3001. doi: 10.1128/jb.182.11.2993-3001.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wright B. E., Longacre A., Reimers J. M. Hypermutation in derepressed operons of Escherichia coli K12. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5089–5094. doi: 10.1073/pnas.96.9.5089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yan Y. X., Schiestl R. H., Prakash L. Mating-type suppression of the DNA-repair defect of the yeast rad6 delta mutation requires the activity of genes in the RAD52 epistasis group. Curr Genet. 1995 Jun;28(1):12–18. doi: 10.1007/BF00311876. [DOI] [PubMed] [Google Scholar]
  48. Zaborowska D., Swietlińska Z., Zuk J. Induction of mitotic recombination by UV and diepoxybutane and its enhancement by hydroxyurea in Saccharomyces cerevisiae. Mutat Res. 1983 Apr;120(1):21–26. doi: 10.1016/0165-7992(83)90069-6. [DOI] [PubMed] [Google Scholar]
  49. van der Kemp P. A., Thomas D., Barbey R., de Oliveira R., Boiteux S. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7,8-dihydro-8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5197–5202. doi: 10.1073/pnas.93.11.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES