Skip to main content
Genetics logoLink to Genetics
. 2003 Oct;165(2):675–685. doi: 10.1093/genetics/165.2.675

R1 and R2 retrotransposition and deletion in the rDNA loci on the X and Y chromosomes of Drosophila melanogaster.

César E Pérez-González 1, William D Burke 1, Thomas H Eickbush 1
PMCID: PMC1462780  PMID: 14573479

Abstract

The non-LTR retrotransposons R1 and R2 insert into the 28S rRNA genes of arthropods. Comparisons among Drosophila lineages have shown that these elements are vertically inherited, while studies within species have indicated a rapid turnover of individual copies (elimination of old copies and the insertion of new copies). To better understand the turnover of R1 and R2, 200 retrotranspositions and nearly 100 eliminations have been scored in the Harwich mutation-accumulation lines of Drosophila melanogaster. Because the rDNA arrays in D. melanogaster are present on the X and Y chromosomes and no exchanges were detected in these lines, it was possible to show that R1 retrotranspositions occur predominantly in the male germ line, while R2 retrotranspositions were more evenly divided between the germ lines of both sexes. The rate of elimination of elements from the Y rDNA array was twice that of the X rDNA array with both chromosomal loci containing regions where the rate of elimination was on average eight times higher. Most R1 and R2 eliminations appear to occur by large intrachromosomal events (i.e., loop-out events) that involve multiple rDNA units. These findings are interpreted in light of the known abundance of R1 and R2 elements in the X and Y rDNA loci of D. melanogaster.

Full Text

The Full Text of this article is available as a PDF (377.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke W. D., Eickbush D. G., Xiong Y., Jakubczak J., Eickbush T. H. Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. Mol Biol Evol. 1993 Jan;10(1):163–185. doi: 10.1093/oxfordjournals.molbev.a039990. [DOI] [PubMed] [Google Scholar]
  2. Burke W. D., Malik H. S., Lathe W. C., 3rd, Eickbush T. H. Are retrotransposons long-term hitchhikers? Nature. 1998 Mar 12;392(6672):141–142. doi: 10.1038/32330. [DOI] [PubMed] [Google Scholar]
  3. Cantú E. S., Gay H. Localization of chromosomal DNA sequences homologous to ribosomal gene type I insertion DNA in Drosophila melanogaster. Mol Gen Genet. 1984;196(2):345–349. doi: 10.1007/BF00328069. [DOI] [PubMed] [Google Scholar]
  4. Clark A. G., Szumski F. M., Lyckegaard E. M. Population genetics of the Y chromosome of Drosophila melanogaster: rDNA variation and phenotypic correlates. Genet Res. 1991 Aug;58(1):7–13. doi: 10.1017/s0016672300029554. [DOI] [PubMed] [Google Scholar]
  5. Coen E. S., Dover G. A. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell. 1983 Jul;33(3):849–855. doi: 10.1016/0092-8674(83)90027-2. [DOI] [PubMed] [Google Scholar]
  6. Coen E. S., Thoday J. M., Dover G. Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature. 1982 Feb 18;295(5850):564–568. doi: 10.1038/295564a0. [DOI] [PubMed] [Google Scholar]
  7. Eickbush D. G., Eickbush T. H. Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. Genetics. 1995 Feb;139(2):671–684. doi: 10.1093/genetics/139.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eickbush D. G., Luan D. D., Eickbush T. H. Integration of Bombyx mori R2 sequences into the 28S ribosomal RNA genes of Drosophila melanogaster. Mol Cell Biol. 2000 Jan;20(1):213–223. doi: 10.1128/mcb.20.1.213-223.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eickbush Danna G., Eickbush Thomas H. Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol. 2003 Jun;23(11):3825–3836. doi: 10.1128/MCB.23.11.3825-3836.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gentile K. L., Burke W. D., Eickbush T. H. Multiple lineages of R1 retrotransposable elements can coexist in the rDNA loci of Drosophila. Mol Biol Evol. 2001 Feb;18(2):235–245. doi: 10.1093/oxfordjournals.molbev.a003797. [DOI] [PubMed] [Google Scholar]
  11. George J. A., Burke W. D., Eickbush T. H. Analysis of the 5' junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics. 1996 Mar;142(3):853–863. doi: 10.1093/genetics/142.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gillings M. R., Frankham R., Speirs J., Whalley M. X-Y Exchange and the Coevolution of the X and Y Rdna Arrays in Drosophila melanogaster. Genetics. 1987 Jun;116(2):241–251. doi: 10.1093/genetics/116.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jakubczak J. L., Burke W. D., Eickbush T. H. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3295–3299. doi: 10.1073/pnas.88.8.3295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakubczak J. L., Xiong Y., Eickbush T. H. Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J Mol Biol. 1990 Mar 5;212(1):37–52. doi: 10.1016/0022-2836(90)90303-4. [DOI] [PubMed] [Google Scholar]
  15. Jakubczak J. L., Zenni M. K., Woodruff R. C., Eickbush T. H. Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. Genetics. 1992 May;131(1):129–142. doi: 10.1093/genetics/131.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kidd S. J., Glover D. M. Drosophila melanogaster ribosomal DNA containing type II insertions is variably transcribed in different strains and tissues. J Mol Biol. 1981 Oct 5;151(4):645–662. doi: 10.1016/0022-2836(81)90428-9. [DOI] [PubMed] [Google Scholar]
  17. Komma D. J., Glass S. J., Endow S. A. Constitutive magnification by the Ybb- chromosome of Drosophila melanogaster. Genet Res. 1993 Dec;62(3):205–212. doi: 10.1017/s0016672300031918. [DOI] [PubMed] [Google Scholar]
  18. Lathe W. C., 3rd, Burke W. D., Eickbush D. G., Eickbush T. H. Evolutionary stability of the R1 retrotransposable element in the genus Drosophila. Mol Biol Evol. 1995 Nov;12(6):1094–1105. doi: 10.1093/oxfordjournals.molbev.a040283. [DOI] [PubMed] [Google Scholar]
  19. Lathe W. C., 3rd, Eickbush T. H. A single lineage of r2 retrotransposable elements is an active, evolutionarily stable component of the Drosophila rDNA locus. Mol Biol Evol. 1997 Dec;14(12):1232–1241. doi: 10.1093/oxfordjournals.molbev.a025732. [DOI] [PubMed] [Google Scholar]
  20. Long E. O., Collins M., Kiefer B. I., Dawid I. B. Expression of the ribosomal DNA insertions in bobbed mutants of Drosophila melanogaster. Mol Gen Genet. 1981;182(3):377–384. doi: 10.1007/BF00293925. [DOI] [PubMed] [Google Scholar]
  21. Luan D. D., Korman M. H., Jakubczak J. L., Eickbush T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993 Feb 26;72(4):595–605. doi: 10.1016/0092-8674(93)90078-5. [DOI] [PubMed] [Google Scholar]
  22. Malik H. S., Burke W. D., Eickbush T. H. The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol. 1999 Jun;16(6):793–805. doi: 10.1093/oxfordjournals.molbev.a026164. [DOI] [PubMed] [Google Scholar]
  23. Nuzhdin S. V., Mackay T. F. The genomic rate of transposable element movement in Drosophila melanogaster. Mol Biol Evol. 1995 Jan;12(1):180–181. doi: 10.1093/oxfordjournals.molbev.a040188. [DOI] [PubMed] [Google Scholar]
  24. Nuzhdin S. V., Pasyukova E. G., Mackay T. F. Accumulation of transposable elements in laboratory lines of Drosophila melanogaster. Genetica. 1997;100(1-3):167–175. [PubMed] [Google Scholar]
  25. Pasyukova E., Nuzhdin S., Li W., Flavell A. J. Germ line transposition of the copia retrotransposon in Drosophila melanogaster is restricted to males by tissue-specific control of copia RNA levels. Mol Gen Genet. 1997 Jun;255(1):115–124. doi: 10.1007/s004380050479. [DOI] [PubMed] [Google Scholar]
  26. Polanco C., González A. I., Dover G. A. Patterns of variation in the intergenic spacers of ribosomal DNA in Drosophila melanogaster support a model for genetic exchanges during X-Y pairing. Genetics. 2000 Jul;155(3):1221–1229. doi: 10.1093/genetics/155.3.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Polanco C., González A. I., de la Fuente, Dover G. A. Multigene family of ribosomal DNA in Drosophila melanogaster reveals contrasting patterns of homogenization for IGS and ITS spacer regions. A possible mechanism to resolve this paradox. Genetics. 1998 May;149(1):243–256. doi: 10.1093/genetics/149.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pérez-González C. E., Eickbush T. H. Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans. Genetics. 2001 Aug;158(4):1557–1567. doi: 10.1093/genetics/158.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pérez-González César E., Eickbush Thomas H. Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. Genetics. 2002 Oct;162(2):799–811. doi: 10.1093/genetics/162.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roiha H., Miller J. R., Woods L. C., Glover D. M. Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature. 1981 Apr 30;290(5809):749–753. doi: 10.1038/290749a0. [DOI] [PubMed] [Google Scholar]
  31. Schlötterer C., Tautz D. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol. 1994 Sep 1;4(9):777–783. doi: 10.1016/s0960-9822(00)00175-5. [DOI] [PubMed] [Google Scholar]
  32. Tartof K. D., Dawid I. G. Similarities and differences in the structure of X and Y chromosome rRNA genes of Drosophila. Nature. 1976 Sep 2;263(5572):27–30. doi: 10.1038/263027a0. [DOI] [PubMed] [Google Scholar]
  33. Wellauer P. K., Dawid I. B., Tartof K. D. X and Y chromosomal ribosomal DNA of Drosophila: comparison of spacers and insertions. Cell. 1978 Jun;14(2):269–278. doi: 10.1016/0092-8674(78)90113-7. [DOI] [PubMed] [Google Scholar]
  34. Williams S. M., Furnier G. R., Fuog E., Strobeck C. Evolution of the ribosomal DNA spacers of Drosophila melanogaster: different patterns of variation on X and Y chromosomes. Genetics. 1987 Jun;116(2):225–232. doi: 10.1093/genetics/116.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Williams S. M., Kennison J. A., Robbins L. G., Strobeck C. Reciprocal recombination and the evolution of the ribosomal gene family of Drosophila melanogaster. Genetics. 1989 Jul;122(3):617–624. doi: 10.1093/genetics/122.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES