Skip to main content
Genetics logoLink to Genetics
. 2003 Oct;165(2):735–745. doi: 10.1093/genetics/165.2.735

Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes.

Jeremiah J Faith 1, David D Pollock 1
PMCID: PMC1462789  PMID: 14573484

Abstract

Protein-coding genes in mitochondrial genomes have varying degrees of asymmetric skew in base frequencies at the third codon position. The variation in skew among genes appears to be caused by varying durations of time that the heavy strand spends in the mutagenic single-strand state during replication (D(ssH)). The primary data used to study skew have been the gene-by-gene base frequencies in individual taxa, which provide little information on exactly what kinds of mutations are responsible for the base frequency skew. To assess the contribution of individual mutation components to the ancestral vertebrate substitution pattern, here we analyze a large data set of complete vertebrate mitochondrial genomes in a phylogeny-based likelihood context. This also allows us to evaluate the change in skew continuously along the mitochondrial genome and to directly estimate relative substitution rates. Our results indicate that different types of mutation respond differently to the D(ssH) gradient. A primary role for hydrolytic deamination of cytosines in creating variance in skew among genes was not supported, but rather linearly increasing rates of mutation from adenine to hypoxanthine with D(ssH) appear to drive regional differences in skew. Substitutions due to hydrolytic deamination of cytosines, although common, appear to quickly saturate, possibly due to stabilization by the mitochondrial DNA single-strand-binding protein. These results should form the basis of more realistic models of DNA and protein evolution in mitochondria.

Full Text

The Full Text of this article is available as a PDF (151.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Shigenaga M. K., Hagen T. M. Mitochondrial decay in aging. Biochim Biophys Acta. 1995 May 24;1271(1):165–170. doi: 10.1016/0925-4439(95)00024-x. [DOI] [PubMed] [Google Scholar]
  2. Asakawa S., Kumazawa Y., Araki T., Himeno H., Miura K., Watanabe K. Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol. 1991 Jun;32(6):511–520. doi: 10.1007/BF02102653. [DOI] [PubMed] [Google Scholar]
  3. Bielawski Joseph P., Gold John R. Mutation patterns of mitochondrial H- and L-strand DNA in closely related Cyprinid fishes. Genetics. 2002 Aug;161(4):1589–1597. doi: 10.1093/genetics/161.4.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clayton D. A. Transcription and replication of mitochondrial DNA. Hum Reprod. 2000 Jul;15 (Suppl 2):11–17. doi: 10.1093/humrep/15.suppl_2.11. [DOI] [PubMed] [Google Scholar]
  5. Delorme M. O., Hénaut A. Codon usage is imposed by the gene location in the transcription unit. Curr Genet. 1991 Nov;20(5):353–358. doi: 10.1007/BF00317061. [DOI] [PubMed] [Google Scholar]
  6. Francino M. P., Ochman H. Strand asymmetries in DNA evolution. Trends Genet. 1997 Jun;13(6):240–245. doi: 10.1016/S0168-9525(97)01118-9. [DOI] [PubMed] [Google Scholar]
  7. Frederico L. A., Kunkel T. A., Shaw B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry. 1990 Mar 13;29(10):2532–2537. doi: 10.1021/bi00462a015. [DOI] [PubMed] [Google Scholar]
  8. Gissi C., Reyes A., Pesole G., Saccone C. Lineage-specific evolutionary rate in mammalian mtDNA. Mol Biol Evol. 2000 Jul;17(7):1022–1031. doi: 10.1093/oxfordjournals.molbev.a026383. [DOI] [PubMed] [Google Scholar]
  9. Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
  10. Holt I. J., Lorimer H. E., Jacobs H. T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000 Mar 3;100(5):515–524. doi: 10.1016/s0092-8674(00)80688-1. [DOI] [PubMed] [Google Scholar]
  11. Impellizzeri K. J., Anderson B., Burgers P. M. The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair. J Bacteriol. 1991 Nov;173(21):6807–6810. doi: 10.1128/jb.173.21.6807-6810.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jermiin L. S., Graur D., Lowe R. M., Crozier R. H. Analysis of directional mutation pressure and nucleotide content in mitochondrial cytochrome b genes. J Mol Evol. 1994 Aug;39(2):160–173. doi: 10.1007/BF00163805. [DOI] [PubMed] [Google Scholar]
  13. Lanave C., Preparata G., Saccone C., Serio G. A new method for calculating evolutionary substitution rates. J Mol Evol. 1984;20(1):86–93. doi: 10.1007/BF02101990. [DOI] [PubMed] [Google Scholar]
  14. Limaiem J., Hénaut A. Etude de la fluctuation de la fréquence des quatre bases le long du génome mitochondiral des Mammifères au moyen de l'analyse factorielle des correspondances. C R Acad Sci III. 1984;298(10):279–286. [PubMed] [Google Scholar]
  15. Limaiem J., Hénaut A. Mise en évidence d'une variation brusque de l'utilisation des codons au voisinage de la terminaison de la transcription. C R Acad Sci III. 1984;299(8):275–280. [PubMed] [Google Scholar]
  16. Linnane A. W., Marzuki S., Ozawa T., Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989 Mar 25;1(8639):642–645. doi: 10.1016/s0140-6736(89)92145-4. [DOI] [PubMed] [Google Scholar]
  17. Lobry J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol. 1996 May;13(5):660–665. doi: 10.1093/oxfordjournals.molbev.a025626. [DOI] [PubMed] [Google Scholar]
  18. Perna N. T., Kocher T. D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol. 1995 Sep;41(3):353–358. doi: 10.1007/BF00186547. [DOI] [PubMed] [Google Scholar]
  19. Pollock D. D., Bruno W. J. Assessing an unknown evolutionary process: effect of increasing site-specific knowledge through taxon addition. Mol Biol Evol. 2000 Dec;17(12):1854–1858. doi: 10.1093/oxfordjournals.molbev.a026286. [DOI] [PubMed] [Google Scholar]
  20. Pollock D. D., Eisen J. A., Doggett N. A., Cummings M. P. A case for evolutionary genomics and the comprehensive examination of sequence biodiversity. Mol Biol Evol. 2000 Dec;17(12):1776–1788. doi: 10.1093/oxfordjournals.molbev.a026278. [DOI] [PubMed] [Google Scholar]
  21. Reyes A., Gissi C., Pesole G., Saccone C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol. 1998 Aug;15(8):957–966. doi: 10.1093/oxfordjournals.molbev.a026011. [DOI] [PubMed] [Google Scholar]
  22. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  23. Shadel G. S., Clayton D. A. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–435. doi: 10.1146/annurev.biochem.66.1.409. [DOI] [PubMed] [Google Scholar]
  24. Sullivan J., Holsinger K. E., Simon C. The effect of topology on estimates of among-site rate variation. J Mol Evol. 1996 Feb;42(2):308–312. doi: 10.1007/BF02198857. [DOI] [PubMed] [Google Scholar]
  25. Tanaka M., Ozawa T. Strand asymmetry in human mitochondrial DNA mutations. Genomics. 1994 Jul 15;22(2):327–335. doi: 10.1006/geno.1994.1391. [DOI] [PubMed] [Google Scholar]
  26. Wolstenholme D. R. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216. doi: 10.1016/s0074-7696(08)62066-5. [DOI] [PubMed] [Google Scholar]
  27. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997 Oct;13(5):555–556. doi: 10.1093/bioinformatics/13.5.555. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES