Abstract
Fluorescent in situ hybridization was used to examine the distribution of six abundant long terminal repeat (LTR) retroelements, Opie, Huck, Cinful-1, Prem-2/Ji, Grande, and Tekay/Prem-1 on maize pachytene chromosomes. Retroelement staining in euchromatin was remarkably uniform, even when we included the structurally polymorphic abnormal chromosome 10 (Ab10) in our analysis. This uniformity made it possible to use euchromatin as a control for quantitative staining intensity measurements in other regions of the genome. The data show that knobs, known to function as facultative neocentromeres when Ab10 is present, tend to exclude retroelements. A notable exception is Cinful-1, which accumulates in TR-1 knob arrays. Staining for each of the six retroelements was also substantially reduced in centromeric satellite arrays to an average of 30% of the staining in euchromatin. This contrasted with two previously described centromere-specific retrotransposable (CR) elements that were readily detected in centromeres. We suggest that retroelements are relatively rare in centromeres because they interrupt the long satellite arrays thought to be required for efficient centromere function. CR elements may have evolved mutualistic relationships with their plant hosts: they are known to interact with the kinetochore protein CENH3 and appear to accumulate in clusters, leaving long satellite arrays intact.
Full Text
The Full Text of this article is available as a PDF (571.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ananiev E. V., Phillips R. L., Rines H. W. A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10785–10790. doi: 10.1073/pnas.95.18.10785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ananiev E. V., Phillips R. L., Rines H. W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13073–13078. doi: 10.1073/pnas.95.22.13073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ananiev E. V., Phillips R. L., Rines H. W. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics. 1998 Aug;149(4):2025–2037. doi: 10.1093/genetics/149.4.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Aragón-Alcaide L., Miller T., Schwarzacher T., Reader S., Moore G. A cereal centromeric sequence. Chromosoma. 1996 Dec;105(5):261–268. doi: 10.1007/BF02524643. [DOI] [PubMed] [Google Scholar]
- Ardlie K. G. Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice. Trends Genet. 1998 May;14(5):189–193. doi: 10.1016/s0168-9525(98)01455-3. [DOI] [PubMed] [Google Scholar]
- Bennetzen Jeffrey L. Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica. 2002 May;115(1):29–36. doi: 10.1023/a:1016015913350. [DOI] [PubMed] [Google Scholar]
- Bowen N. J., McDonald J. F. Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genome Res. 2001 Sep;11(9):1527–1540. doi: 10.1101/gr.164201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandes A., Heslop-Harrison J. S., Kamm A., Kubis S., Doudrick R. L., Schmidt T. Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol. 1997 Jan;33(1):11–21. doi: 10.1023/a:1005797222148. [DOI] [PubMed] [Google Scholar]
- Buckler E. S., 4th, Phelps-Durr T. L., Buckler C. S., Dawe R. K., Doebley J. F., Holtsford T. P. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics. 1999 Sep;153(1):415–426. doi: 10.1093/genetics/153.1.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casacuberta Elena, Pardue Mary-Lou. Transposon telomeres are widely distributed in the Drosophila genus: TART elements in the virilis group. Proc Natl Acad Sci U S A. 2003 Mar 7;100(6):3363–3368. doi: 10.1073/pnas.0230353100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavalier-Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci. 1978 Dec;34:247–278. doi: 10.1242/jcs.34.1.247. [DOI] [PubMed] [Google Scholar]
- Cheng Zhukuan, Dong Fenggao, Langdon Tim, Ouyang Shu, Buell C. Robin, Gu Minghong, Blattner Frederick R., Jiang Jiming. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002 Aug;14(8):1691–1704. doi: 10.1105/tpc.003079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawe R. K., Sedat J. W., Agard D. A., Cande W. Z. Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell. 1994 Mar 11;76(5):901–912. doi: 10.1016/0092-8674(94)90364-6. [DOI] [PubMed] [Google Scholar]
- Edwards K. J., Veuskens J., Rawles H., Daly A., Bennetzen J. L. Characterization of four dispersed repetitive DNA sequences from Zea mays and their use in constructing contiguous DNA fragments using YAC clones. Genome. 1996 Aug;39(4):811–817. doi: 10.1139/g96-102. [DOI] [PubMed] [Google Scholar]
- Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
- Feng Qi, Zhang Yujun, Hao Pei, Wang Shengyue, Fu Gang, Huang Yucheng, Li Ying, Zhu Jingjie, Liu Yilei, Hu Xin. Sequence and analysis of rice chromosome 4. Nature. 2002 Nov 21;420(6913):316–320. doi: 10.1038/nature01183. [DOI] [PubMed] [Google Scholar]
- Friesen N., Brandes A., Heslop-Harrison J. S. Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol. 2001 Jul;18(7):1176–1188. doi: 10.1093/oxfordjournals.molbev.a003905. [DOI] [PubMed] [Google Scholar]
- Grimes Brenda R., Rhoades Angela A., Willard Huntington F. Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther. 2002 Jun;5(6):798–805. doi: 10.1006/mthe.2002.0612. [DOI] [PubMed] [Google Scholar]
- Haupt W., Fischer T. C., Winderl S., Fransz P., Torres-Ruiz R. A. The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J. 2001 Aug;27(4):285–296. doi: 10.1046/j.1365-313x.2001.01087.x. [DOI] [PubMed] [Google Scholar]
- Henikoff S., Henikoff J. G. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915–10919. doi: 10.1073/pnas.89.22.10915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff Steven. Near the edge of a chromosome's "black hole". Trends Genet. 2002 Apr;18(4):165–167. doi: 10.1016/s0168-9525(01)02622-1. [DOI] [PubMed] [Google Scholar]
- Hiatt Evelyn N., Dawe R. Kelly. The meiotic drive system on maize abnormal chromosome 10 contains few essential genes. Genetica. 2003 Jan;117(1):67–76. doi: 10.1023/a:1022316716682. [DOI] [PubMed] [Google Scholar]
- Hiatt Evelyn N., Kentner Edward K., Dawe R. Kelly. Independently regulated neocentromere activity of two classes of tandem repeat arrays. Plant Cell. 2002 Feb;14(2):407–420. doi: 10.1105/tpc.010373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosouchi Tsutomu, Kumekawa Norikazu, Tsuruoka Hisano, Kotani Hirokazu. Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 2002 Aug 31;9(4):117–121. doi: 10.1093/dnares/9.4.117. [DOI] [PubMed] [Google Scholar]
- Hudakova S., Michalek W., Presting G. G., ten Hoopen R., dos Santos K., Jasencakova Z., Schubert I. Sequence organization of barley centromeres. Nucleic Acids Res. 2001 Dec 15;29(24):5029–5035. doi: 10.1093/nar/29.24.5029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S., Ward D. C. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14210–14213. doi: 10.1073/pnas.93.24.14210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kikudome G Y. Studies on the Phenomenon of Preferential Segregation in Maize. Genetics. 1959 Sep;44(5):815–831. doi: 10.1093/genetics/44.5.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar A., Bennetzen J. L. Plant retrotransposons. Annu Rev Genet. 1999;33:479–532. doi: 10.1146/annurev.genet.33.1.479. [DOI] [PubMed] [Google Scholar]
- Kumar A., Pearce S. R., McLean K., Harrison G., Heslop-Harrison J. S., Waugh R., Flavell A. J. The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers. Genetica. 1997;100(1-3):205–217. [PubMed] [Google Scholar]
- Kumekawa N., Hosouchi T., Tsuruoka H., Kotani H. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res. 2001 Dec 31;8(6):285–290. doi: 10.1093/dnares/8.6.285. [DOI] [PubMed] [Google Scholar]
- Langdon T., Seago C., Mende M., Leggett M., Thomas H., Forster J. W., Jones R. N., Jenkins G. Retrotransposon evolution in diverse plant genomes. Genetics. 2000 Sep;156(1):313–325. doi: 10.1093/genetics/156.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malik H. S., Eickbush T. H. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol. 1999 Jun;73(6):5186–5190. doi: 10.1128/jvi.73.6.5186-5190.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers B. C., Tingey S. V., Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 2001 Oct;11(10):1660–1676. doi: 10.1101/gr.188201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. T., Dong F., Jackson S. A., Song J., Jiang J. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics. 1998 Dec;150(4):1615–1623. doi: 10.1093/genetics/150.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagaki Kiyotaka, Talbert Paul B., Zhong Cathy Xiaoyan, Dawe R. Kelly, Henikoff Steven, Jiang Jiming. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics. 2003 Mar;163(3):1221–1225. doi: 10.1093/genetics/163.3.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pagel M., Johnstone R. A. Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc Biol Sci. 1992 Aug 22;249(1325):119–124. doi: 10.1098/rspb.1992.0093. [DOI] [PubMed] [Google Scholar]
- Pardue M. L., Debaryshe P. G. Drosophila telomere transposons: genetically active elements in heterochromatin. Genetica. 2000;109(1-2):45–52. doi: 10.1023/a:1026540301503. [DOI] [PubMed] [Google Scholar]
- Peacock W. J., Dennis E. S., Rhoades M. M., Pryor A. J. Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4490–4494. doi: 10.1073/pnas.78.7.4490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearce S. R., Harrison G., Heslop-Harrison P. J., Flavell A. J., Kumar A. Characterization and genomic organization of Ty1-copia group retrotransposons in rye (Secale cereale). Genome. 1997 Oct;40(5):617–625. doi: 10.1139/g97-081. [DOI] [PubMed] [Google Scholar]
- Pearce S. R., Harrison G., Li D., Heslop-Harrison J., Kumar A., Flavell A. J. The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localisation. Mol Gen Genet. 1996 Feb 25;250(3):305–315. doi: 10.1007/BF02174388. [DOI] [PubMed] [Google Scholar]
- Pich U., Schubert I. Terminal heterochromatin and alternative telomeric sequences in Allium cepa. Chromosome Res. 1998 Jun;6(4):315–321. doi: 10.1023/a:1009227009121. [DOI] [PubMed] [Google Scholar]
- Presting G. G., Malysheva L., Fuchs J., Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998 Dec;16(6):721–728. doi: 10.1046/j.1365-313x.1998.00341.x. [DOI] [PubMed] [Google Scholar]
- Pérez-González César E., Eickbush Thomas H. Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. Genetics. 2002 Oct;162(2):799–811. doi: 10.1093/genetics/162.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhoades M M. Preferential Segregation in Maize. Genetics. 1942 Jul;27(4):395–407. doi: 10.1093/genetics/27.4.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
- Schueler M. G., Higgins A. W., Rudd M. K., Gustashaw K., Willard H. F. Genomic and genetic definition of a functional human centromere. Science. 2001 Oct 5;294(5540):109–115. doi: 10.1126/science.1065042. [DOI] [PubMed] [Google Scholar]
- Sniegowski P. D., Charlesworth B. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics. 1994 Jul;137(3):815–827. doi: 10.1093/genetics/137.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song J., Dong F., Lilly J. W., Stupar R. M., Jiang J. Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome. 2001 Jun;44(3):463–469. [PubMed] [Google Scholar]
- Tikhonov A. P., SanMiguel P. J., Nakajima Y., Gorenstein N. M., Bennetzen J. L., Avramova Z. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7409–7414. doi: 10.1073/pnas.96.13.7409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vicient CM, Suoniemi A, Anamthawat-Jónsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell. 1999 Sep;11(9):1769–1784. doi: 10.1105/tpc.11.9.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E., Keller B. Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 2001 May;26(3):307–316. doi: 10.1046/j.1365-313x.2001.01028.x. [DOI] [PubMed] [Google Scholar]
- Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y., Eickbush T. H. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol. 1988 Nov;5(6):675–690. doi: 10.1093/oxfordjournals.molbev.a040521. [DOI] [PubMed] [Google Scholar]
- Zhong Cathy Xiaoyan, Marshall Joshua B., Topp Christopher, Mroczek Rebecca, Kato Akio, Nagaki Kiyotaka, Birchler James A., Jiang Jiming, Dawe R. Kelly. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002 Nov;14(11):2825–2836. doi: 10.1105/tpc.006106. [DOI] [PMC free article] [PubMed] [Google Scholar]