Skip to main content
Genetics logoLink to Genetics
. 2003 Oct;165(2):601–612. doi: 10.1093/genetics/165.2.601

Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila.

Anna T Chao 1, Herman A Dierick 1, Tracie M Addy 1, Amy Bejsovec 1
PMCID: PMC1462801  PMID: 14573473

Abstract

In a screen for suppressors of the Drosophila wingless(PE4) nonsense allele, we isolated mutations in the two components that form eukaryotic release factor. eRF1 and eRF3 comprise the translation termination complex that recognizes stop codons and catalyzes the release of nascent polypeptide chains from ribosomes. Mutations disrupting the Drosophila eRF1 and eRF3 show a strong maternal-effect nonsense suppression due to readthrough of stop codons and are zygotically lethal during larval stages. We tested nonsense mutations in wg and in other embryonically acting genes and found that different stop codons can be suppressed but only a subset of nonsense alleles are subject to suppression. We suspect that the context of the stop codon is significant: nonsense alleles sensitive to suppression by eRF1 and eRF3 encode stop codons that are immediately followed by a cytidine. Such suppressible alleles appear to be intrinsically weak, with a low level of readthrough that is enhanced when translation termination is disrupted. Thus the eRF1 and eRF3 mutations provide a tool for identifying nonsense alleles that are leaky. Our findings have important implications for assigning null mutant phenotypes and for selecting appropriate alleles to use in suppressor screens.

Full Text

The Full Text of this article is available as a PDF (694.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Basu J., Williams B. C., Li Z., Williams E. V., Goldberg M. L. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis. Cell Motil Cytoskeleton. 1998;39(4):286–302. doi: 10.1002/(SICI)1097-0169(1998)39:4<286::AID-CM4>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  3. Bejsovec A., Wieschaus E. Signaling activities of the Drosophila wingless gene are separately mutable and appear to be transduced at the cell surface. Genetics. 1995 Jan;139(1):309–320. doi: 10.1093/genetics/139.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  5. Bertram G., Innes S., Minella O., Richardson J., Stansfield I. Endless possibilities: translation termination and stop codon recognition. Microbiology. 2001 Feb;147(Pt 2):255–269. doi: 10.1099/00221287-147-2-255. [DOI] [PubMed] [Google Scholar]
  6. Brown C. M., Stockwell P. A., Trotman C. N., Tate W. P. The signal for the termination of protein synthesis in procaryotes. Nucleic Acids Res. 1990 Apr 25;18(8):2079–2086. doi: 10.1093/nar/18.8.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Böck A. Biosynthesis of selenoproteins--an overview. Biofactors. 2000;11(1-2):77–78. doi: 10.1002/biof.5520110122. [DOI] [PubMed] [Google Scholar]
  8. Cavallo R. A., Cox R. T., Moline M. M., Roose J., Polevoy G. A., Clevers H., Peifer M., Bejsovec A. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature. 1998 Oct 8;395(6702):604–608. doi: 10.1038/26982. [DOI] [PubMed] [Google Scholar]
  9. Czaplinski K., Ruiz-Echevarria M. J., Paushkin S. V., Han X., Weng Y., Perlick H. A., Dietz H. C., Ter-Avanesyan M. D., Peltz S. W. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 1998 Jun 1;12(11):1665–1677. doi: 10.1101/gad.12.11.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dierick H. A., Bejsovec A. Functional analysis of Wingless reveals a link between intercellular ligand transport and dorsal-cell-specific signaling. Development. 1998 Dec;125(23):4729–4738. doi: 10.1242/dev.125.23.4729. [DOI] [PubMed] [Google Scholar]
  11. Doerig R. E., Suter B., Gray M., Kubli E. Identification of an amber nonsense mutation in the rosy516 gene by germline transformation of an amber suppressor tRNA gene. EMBO J. 1988 Aug;7(8):2579–2584. doi: 10.1002/j.1460-2075.1988.tb03107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 1997 Jul 1;16(13):4126–4133. doi: 10.1093/emboj/16.13.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frolova L. Y., Tsivkovskii R. Y., Sivolobova G. F., Oparina N. Y., Serpinsky O. I., Blinov V. M., Tatkov S. I., Kisselev L. L. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 1999 Aug;5(8):1014–1020. doi: 10.1017/s135583829999043x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fu Lian-Hai, Wang Xiao-Feng, Eyal Yoram, She Yi-Min, Donald Lynda J., Standing Kenneth G., Ben-Hayyim Gozal. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem. 2002 Apr 24;277(29):25983–25991. doi: 10.1074/jbc.M202912200. [DOI] [PubMed] [Google Scholar]
  15. Harrell Lance, Melcher Ulrich, Atkins John F. Predominance of six different hexanucleotide recoding signals 3' of read-through stop codons. Nucleic Acids Res. 2002 May 1;30(9):2011–2017. doi: 10.1093/nar/30.9.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hauser Elizabeth R., Mooser Vincent, Crossman David C., Haines Jonathan L., Jones Christopher H., Winkelmann Bernhard R., Schmidt Silke, Scott William K., Roses Allen D., Pericak-Vance Margaret A. Design of the Genetics of Early Onset Cardiovascular Disease (GENECARD) study. Am Heart J. 2003 Apr;145(4):602–613. doi: 10.1067/mhj.2003.13. [DOI] [PubMed] [Google Scholar]
  17. Hays R., Gibori G. B., Bejsovec A. Wingless signaling generates pattern through two distinct mechanisms. Development. 1997 Oct;124(19):3727–3736. doi: 10.1242/dev.124.19.3727. [DOI] [PubMed] [Google Scholar]
  18. Kisselev L. L., Buckingham R. H. Translational termination comes of age. Trends Biochem Sci. 2000 Nov;25(11):561–566. doi: 10.1016/s0968-0004(00)01669-8. [DOI] [PubMed] [Google Scholar]
  19. Knight R. D., Landweber L. F. The early evolution of the genetic code. Cell. 2000 Jun 9;101(6):569–572. doi: 10.1016/s0092-8674(00)80866-1. [DOI] [PubMed] [Google Scholar]
  20. Lukinova N. I., Roussakova V. V., Fortini M. E. Genetic characterization of cytological region 77A-D harboring the presenilin gene of Drosophila melanogaster. Genetics. 1999 Dec;153(4):1789–1797. doi: 10.1093/genetics/153.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacBeath G., Kast P. UGA read-through artifacts--when popular gene expression systems need a pATCH. Biotechniques. 1998 May;24(5):789–794. doi: 10.2144/98245st02. [DOI] [PubMed] [Google Scholar]
  22. Maixner A., Hecker T. P., Phan Q. N., Wassarman D. A. A screen for mutations that prevent lethality caused by expression of activated sevenless and Ras1 in the Drosophila embryo. Dev Genet. 1998;23(4):347–361. doi: 10.1002/(SICI)1520-6408(1998)23:4<347::AID-DVG9>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  23. McCartney B. M., Dierick H. A., Kirkpatrick C., Moline M. M., Baas A., Peifer M., Bejsovec A. Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J Cell Biol. 1999 Sep 20;146(6):1303–1318. doi: 10.1083/jcb.146.6.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McCaughan K. K., Brown C. M., Dalphin M. E., Berry M. J., Tate W. P. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5431–5435. doi: 10.1073/pnas.92.12.5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Namy O., Hatin I., Rousset J. P. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep. 2001 Aug 23;2(9):787–793. doi: 10.1093/embo-reports/kve176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ostrowski Stephen, Dierick Herman A., Bejsovec Amy. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics. 2002 May;161(1):171–182. doi: 10.1093/genetics/161.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Phillips-Jones M. K., Hill L. S., Atkinson J., Martin R. Context effects on misreading and suppression at UAG codons in human cells. Mol Cell Biol. 1995 Dec;15(12):6593–6600. doi: 10.1128/mcb.15.12.6593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Samson M. L., Lisbin M. J., White K. Two distinct temperature-sensitive alleles at the elav locus of Drosophila are suppressed nonsense mutations of the same tryptophan codon. Genetics. 1995 Nov;141(3):1101–1111. doi: 10.1093/genetics/141.3.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Seit-Nebi A., Frolova L., Justesen J., Kisselev L. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res. 2001 Oct 1;29(19):3982–3987. doi: 10.1093/nar/29.19.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stansfield I., Tuite M. F. Polypeptide chain termination in Saccharomyces cerevisiae. Curr Genet. 1994 May;25(5):385–395. doi: 10.1007/BF00351776. [DOI] [PubMed] [Google Scholar]
  31. Ter-Avanesyan M. D., Kushnirov V. V., Dagkesamanskaya A. R., Didichenko S. A., Chernoff Y. O., Inge-Vechtomov S. G., Smirnov V. N. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol. 1993 Mar;7(5):683–692. doi: 10.1111/j.1365-2958.1993.tb01159.x. [DOI] [PubMed] [Google Scholar]
  32. Tikhomirova V. L., Inge-Vechtomov S. G. Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl. Curr Genet. 1996 Jun;30(1):44–49. doi: 10.1007/s002940050098. [DOI] [PubMed] [Google Scholar]
  33. Tujebajeva R. M., Copeland P. R., Xu X. M., Carlson B. A., Harney J. W., Driscoll D. M., Hatfield D. L., Berry M. J. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 2000 Aug;1(2):158–163. doi: 10.1093/embo-reports/kvd033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Washburn T., O'Tousa J. E. Nonsense suppression of the major rhodopsin gene of Drosophila. Genetics. 1992 Mar;130(3):585–595. doi: 10.1093/genetics/130.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xu T., Rubin G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993 Apr;117(4):1223–1237. doi: 10.1242/dev.117.4.1223. [DOI] [PubMed] [Google Scholar]
  36. Zavialov A. V., Buckingham R. H., Ehrenberg M. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell. 2001 Oct 5;107(1):115–124. doi: 10.1016/s0092-8674(01)00508-6. [DOI] [PubMed] [Google Scholar]
  37. Zerfass K., Beier H. The leaky UGA termination codon of tobacco rattle virus RNA is suppressed by tobacco chloroplast and cytoplasmic tRNAs(Trp) with CmCA anticodon. EMBO J. 1992 Nov;11(11):4167–4173. doi: 10.1002/j.1460-2075.1992.tb05510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van de Wetering M., Cavallo R., Dooijes D., van Beest M., van Es J., Loureiro J., Ypma A., Hursh D., Jones T., Bejsovec A. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. 1997 Mar 21;88(6):789–799. doi: 10.1016/s0092-8674(00)81925-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES