Abstract
Phylogenetic analyses of angiosperm MADS-box genes suggest that this gene family has undergone multiple duplication events followed by sequence divergence. To determine when such events have taken place and to understand the relationships of particular MADS-box gene lineages, we have identified APETALA1/FRUITFULL-like MADS-box genes from a variety of angiosperm species. Our phylogenetic analyses show two gene clades within the core eudicots, euAP1 (including Arabidopsis APETALA1 and Antirrhinum SQUAMOSA) and euFUL (including Arabidopsis FRUITFULL). Non-core eudicot species have only sequences similar to euFUL genes (FUL-like). The predicted protein products of euFUL and FUL-like genes share a conserved C-terminal motif. In contrast, predicted products of members of the euAP1 gene clade contain a different C terminus that includes an acidic transcription activation domain and a farnesylation signal. Sequence analyses indicate that the euAP1 amino acid motifs may have arisen via a translational frameshift from the euFUL/FUL-like motif. The euAP1 gene clade includes key regulators of floral development that have been implicated in the specification of perianth identity. However, the presence of euAP1 genes only in core eudicots suggests that there may have been changes in mechanisms of floral development that are correlated with the fixation of floral structure seen in this clade.
Full Text
The Full Text of this article is available as a PDF (310.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alvarez-Buylla E. R., Liljegren S. J., Pelaz S., Gold S. E., Burgeff C., Ditta G. S., Vergara-Silva F., Yanofsky M. F. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 2000 Nov;24(4):457–466. doi: 10.1046/j.1365-313x.2000.00891.x. [DOI] [PubMed] [Google Scholar]
- Alvarez-Buylla E. R., Pelaz S., Liljegren S. J., Gold S. E., Burgeff C., Ditta G. S., Ribas de Pouplana L., Martínez-Castilla L., Yanofsky M. F. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5328–5333. doi: 10.1073/pnas.97.10.5328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ampomah-Dwamena Charles, Morris Bret A., Sutherland Paul, Veit Bruce, Yao Jia-Long. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol. 2002 Oct;130(2):605–617. doi: 10.1104/pp.005223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Angenent G. C., Franken J., Busscher M., van Dijken A., van Went J. L., Dons H. J., van Tunen A. J. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995 Oct;7(10):1569–1582. doi: 10.1105/tpc.7.10.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker A., Winter K. U., Meyer B., Saedler H., Theissen G. MADS-Box gene diversity in seed plants 300 million years ago. Mol Biol Evol. 2000 Oct;17(10):1425–1434. doi: 10.1093/oxfordjournals.molbev.a026243. [DOI] [PubMed] [Google Scholar]
- Berbel A., Navarro C., Ferrándiz C., Cañas L. A., Madueño F., Beltrán J. P. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 2001 Feb;25(4):441–451. doi: 10.1046/j.1365-313x.2001.00974.x. [DOI] [PubMed] [Google Scholar]
- Cho S., Jang S., Chae S., Chung K. M., Moon Y. H., An G., Jang S. K. Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Mol Biol. 1999 Jun;40(3):419–429. doi: 10.1023/a:1006273127067. [DOI] [PubMed] [Google Scholar]
- Coen E. S., Meyerowitz E. M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. doi: 10.1038/353031a0. [DOI] [PubMed] [Google Scholar]
- Davies B., Motte P., Keck E., Saedler H., Sommer H., Schwarz-Sommer Z. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 1999 Jul 15;18(14):4023–4034. doi: 10.1093/emboj/18.14.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egea-Cortines M., Saedler H., Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 1999 Oct 1;18(19):5370–5379. doi: 10.1093/emboj/18.19.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elo Annakaisa, Lemmetyinen Juha, Turunen Marja-Leena, Tikka Liisa, Sopanen Tuomas. Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant. 2001 May;112(1):95–103. doi: 10.1034/j.1399-3054.2001.1120113.x. [DOI] [PubMed] [Google Scholar]
- Endress P. K. Origins of flower morphology. J Exp Zool. 2001 Aug 15;291(2):105–115. doi: 10.1002/jez.1063. [DOI] [PubMed] [Google Scholar]
- Ferrándiz C., Gu Q., Martienssen R., Yanofsky M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development. 2000 Feb;127(4):725–734. doi: 10.1242/dev.127.4.725. [DOI] [PubMed] [Google Scholar]
- Gocal G. F., King R. W., Blundell C. A., Schwartz O. M., Andersen C. H., Weigel D. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 2001 Apr;125(4):1788–1801. doi: 10.1104/pp.125.4.1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu Q., Ferrándiz C., Yanofsky M. F., Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development. 1998 Apr;125(8):1509–1517. doi: 10.1242/dev.125.8.1509. [DOI] [PubMed] [Google Scholar]
- Gutierrez-Cortines M. E., Davies B. Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci. 2000 Nov;5(11):471–476. doi: 10.1016/s1360-1385(00)01761-1. [DOI] [PubMed] [Google Scholar]
- Huijser P., Klein J., Lönnig W. E., Meijer H., Saedler H., Sommer H. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 1992 Apr;11(4):1239–1249. doi: 10.1002/j.1460-2075.1992.tb05168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Immink R. G., Hannapel D. J., Ferrario S., Busscher M., Franken J., Lookeren Campagne M. M., Angenent G. C. A petunia MADS box gene involved in the transition from vegetative to reproductive development. Development. 1999 Nov;126(22):5117–5126. doi: 10.1242/dev.126.22.5117. [DOI] [PubMed] [Google Scholar]
- Irish V. F., Sussex I. M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell. 1990 Aug;2(8):741–753. doi: 10.1105/tpc.2.8.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jang Seonghoe, An Kyungsook, Lee Shinyoung, An Gynheung. Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol. 2002 Feb;43(2):230–238. doi: 10.1093/pcp/pcf015. [DOI] [PubMed] [Google Scholar]
- Jia H, Chen R, Cong B, Cao K, Sun C, Luo D. Characterization and transcriptional profiles of two rice MADS-box genes. Plant Sci. 2000 Jun 29;155(2):115–122. doi: 10.1016/s0168-9452(00)00191-6. [DOI] [PubMed] [Google Scholar]
- Kempin S. A., Savidge B., Yanofsky M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995 Jan 27;267(5197):522–525. doi: 10.1126/science.7824951. [DOI] [PubMed] [Google Scholar]
- Kramer E. M., Dorit R. L., Irish V. F. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics. 1998 Jun;149(2):765–783. doi: 10.1093/genetics/149.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer E. M., Irish V. F. Evolution of genetic mechanisms controlling petal development. Nature. 1999 May 13;399(6732):144–148. doi: 10.1038/20172. [DOI] [PubMed] [Google Scholar]
- Krizek B. A., Meyerowitz E. M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4063–4070. doi: 10.1073/pnas.93.9.4063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyozuka J., Harcourt R., Peacock W. J., Dennis E. S. Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol. 1997 Nov;35(5):573–584. doi: 10.1023/a:1005885808652. [DOI] [PubMed] [Google Scholar]
- Lamb Rebecca S., Irish Vivian F. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci U S A. 2003 May 13;100(11):6558–6563. doi: 10.1073/pnas.0631708100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawton-Rauh AL, Alvarez-Buylla ER, Purugganan MD. Molecular evolution of flower development. Trends Ecol Evol. 2000 Apr;15(4):144–149. doi: 10.1016/s0169-5347(99)01816-9. [DOI] [PubMed] [Google Scholar]
- Lowman A. C., Purugganan M. D. Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. J Hered. 1999 Sep-Oct;90(5):514–520. doi: 10.1093/jhered/90.5.514. [DOI] [PubMed] [Google Scholar]
- Mandel M. A., Gustafson-Brown C., Savidge B., Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. doi: 10.1038/360273a0. [DOI] [PubMed] [Google Scholar]
- Mellerowicz E. J., Horgan K., Walden A., Coker A., Walter C. PRFLL--a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta. 1998 Nov;206(4):619–629. doi: 10.1007/s004250050440. [DOI] [PubMed] [Google Scholar]
- Moon Y. H., Kang H. G., Jung J. Y., Jeon J. S., Sung S. K., An G. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 1999 Aug;120(4):1193–1204. doi: 10.1104/pp.120.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mouradov A., Glassick T., Hamdorf B., Murphy L., Fowler B., Marla S., Teasdale R. D. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6537–6542. doi: 10.1073/pnas.95.11.6537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pouteau S., Nicholls D., Tooke F., Coen E., Battey N. The induction and maintenance of flowering in Impatiens. Development. 1997 Sep;124(17):3343–3351. doi: 10.1242/dev.124.17.3343. [DOI] [PubMed] [Google Scholar]
- Purugganan M. D., Rounsley S. D., Schmidt R. J., Yanofsky M. F. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics. 1995 May;140(1):345–356. doi: 10.1093/genetics/140.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purugganan M. D. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J Mol Evol. 1997 Oct;45(4):392–396. doi: 10.1007/pl00006244. [DOI] [PubMed] [Google Scholar]
- Rounsley S. D., Ditta G. S., Yanofsky M. F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell. 1995 Aug;7(8):1259–1269. doi: 10.1105/tpc.7.8.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savolainen V., Chase M. W., Hoot S. B., Morton C. M., Soltis D. E., Bayer C., Fay M. F., de Bruijn A. Y., Sullivan S., Qiu Y. L. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Syst Biol. 2000 Jun;49(2):306–362. doi: 10.1093/sysbio/49.2.306. [DOI] [PubMed] [Google Scholar]
- Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990 Nov 16;250(4983):931–936. doi: 10.1126/science.250.4983.931. [DOI] [PubMed] [Google Scholar]
- Shindo S., Ito M., Ueda K., Kato M., Hasebe M. Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev. 1999 Nov-Dec;1(3):180–190. doi: 10.1046/j.1525-142x.1999.99024.x. [DOI] [PubMed] [Google Scholar]
- Soltis E. D., Soltis P. S. Contributions of plant molecular systematics to studies of molecular evolution. Plant Mol Biol. 2000 Jan;42(1):45–75. [PubMed] [Google Scholar]
- Sundström J., Carlsbecker A., Svensson M. E., Svenson M., Johanson U., Theissen G., Engström P. MADS-box genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-class floral homeotic genes in angiosperms. Dev Genet. 1999 Sep;25(3):253–266. doi: 10.1002/(SICI)1520-6408(1999)25:3<253::AID-DVG8>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Taylor Scott A., Hofer Julie M. I., Murfet Ian C., Sollinger John D., Singer Susan R., Knox Maggie R., Ellis T. H. Noel. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea. Plant Physiol. 2002 Jul;129(3):1150–1159. doi: 10.1104/pp.001677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theissen G., Becker A., Di Rosa A., Kanno A., Kim J. T., Münster T., Winter K. U., Saedler H. A short history of MADS-box genes in plants. Plant Mol Biol. 2000 Jan;42(1):115–149. [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigel D., Meyerowitz E. M. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203–209. doi: 10.1016/0092-8674(94)90291-7. [DOI] [PubMed] [Google Scholar]
- Winter K. U., Becker A., Münster T., Kim J. T., Saedler H., Theissen G. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7342–7347. doi: 10.1073/pnas.96.13.7342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yalovsky S., Rodríguez-Concepción M., Bracha K., Toledo-Ortiz G., Gruissem W. Prenylation of the floral transcription factor APETALA1 modulates its function. Plant Cell. 2000 Aug;12(8):1257–1266. doi: 10.1105/tpc.12.8.1257. [DOI] [PMC free article] [PubMed] [Google Scholar]