Abstract
Parasites have profound effects on host ecology and evolution, and the effects of parasites on host ecology are often influenced by the magnitude of host susceptibility to parasites. Many parasites have complex life cycles that require intermediate hosts for their transmission, but little is known about the genetic basis of the intermediate host's susceptibility to these parasites. This study examined the genetic basis of susceptibility to a tapeworm (Hymenolepis diminuta) in the red flour beetle (Tribolium castaneum) that serves as an intermediate host in its transmission. Quantitative trait loci (QTL) mapping experiments were conducted with two independent segregating populations using amplified fragment length polymorphism (AFLP) markers and randomly amplified polymorphic DNA (RAPD) markers. A total of five QTL that significantly affected beetle susceptibility were identified in the two reciprocal crosses. Two common QTL on linkage groups 3 and 6 were identified in both crosses with similar effects on the phenotype, and three QTL were unique to each cross. In one cross, the three main QTL accounted for 29% of the total phenotypic variance and digenic epistasis explained 39% of the variance. In the second cross, the four main QTL explained 62% of the variance and digenic epistasis accounted for only 5% of the variance. The actions of these QTL were either overdominance or underdominance. Our results suggest that the polygenic nature of beetle susceptibility to the parasites and epistasis are important genetic mechanisms for the maintenance of variation within or among beetle strains in susceptibility to tapeworm infection.
Full Text
The Full Text of this article is available as a PDF (161.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert K. B., Tanksley S. D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15503–15507. doi: 10.1073/pnas.93.26.15503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beeman R. W., Brown S. J. RAPD-based genetic linkage maps of Tribolium castaneum. Genetics. 1999 Sep;153(1):333–338. doi: 10.1093/genetics/153.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beerntsen B. T., Severson D. W., Klinkhammer J. A., Kassner V. A., Christensen B. M. Aedes aegypti: a quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens. Exp Parasitol. 1995 Nov;81(3):355–362. doi: 10.1006/expr.1995.1126. [DOI] [PubMed] [Google Scholar]
- Bremermann H. J. Sex and polymorphism as strategies in host-pathogen interactions. J Theor Biol. 1980 Dec 21;87(4):671–702. doi: 10.1016/0022-5193(80)90111-3. [DOI] [PubMed] [Google Scholar]
- Cheverud J. M., Routman E. J. Epistasis and its contribution to genetic variance components. Genetics. 1995 Mar;139(3):1455–1461. doi: 10.1093/genetics/139.3.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon D. M., Whitfield P. J. Interactions of the cysticercoids of Hymenolepis diminuta and raillietina cesticillus in their intermediate host, Tribolium confusum. Parasitology. 1985 Jun;90(Pt 3):421–431. doi: 10.1017/s0031182000055414. [DOI] [PubMed] [Google Scholar]
- Groover A., Devey M., Fiddler T., Lee J., Megraw R., Mitchel-Olds T., Sherman B., Vujcic S., Williams C., Neale D. Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics. 1994 Dec;138(4):1293–1300. doi: 10.1093/genetics/138.4.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heo M., Leibel R. L., Boyer B. B., Chung W. K., Koulu M., Karvonen M. K., Pesonen U., Rissanen A., Laakso M., Uusitupa M. I. Pooling analysis of genetic data: the association of leptin receptor (LEPR) polymorphisms with variables related to human adiposity. Genetics. 2001 Nov;159(3):1163–1178. doi: 10.1093/genetics/159.3.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kearns J. Y., Hurd H., Pullin A. S. Effect of metacestodes of Hymenolepis diminuta on storage and circulating carbohydrates in the intermediate host, Tenebrio molitor. Parasitology. 1994 May;108(Pt 4):473–478. doi: 10.1017/s0031182000076034. [DOI] [PubMed] [Google Scholar]
- Lark K. G., Chase K., Adler F., Mansur L. M., Orf J. H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4656–4660. doi: 10.1073/pnas.92.10.4656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z. K., Luo L. J., Mei H. W., Wang D. L., Shu Q. Y., Tabien R., Zhong D. B., Ying C. S., Stansel J. W., Khush G. S. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics. 2001 Aug;158(4):1737–1753. doi: 10.1093/genetics/158.4.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z., Pinson S. R., Park W. D., Paterson A. H., Stansel J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics. 1997 Feb;145(2):453–465. doi: 10.1093/genetics/145.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manly K. F., Cudmore R. H., Jr, Meer J. M. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome. 2001 Dec;12(12):930–932. doi: 10.1007/s00335-001-1016-3. [DOI] [PubMed] [Google Scholar]
- Peripato Andréa C., De Brito Reinaldo A., Vaughn Ty T., Pletscher L. Susan, Matioli Sergio R., Cheverud James M. Quantitative trait loci for maternal performance for offspring survival in mice. Genetics. 2002 Nov;162(3):1341–1353. doi: 10.1093/genetics/162.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poulin R., Thomas F. Phenotypic variability induced by parasites:. Parasitol Today. 1999 Jan;15(1):28–32. doi: 10.1016/s0169-4758(98)01357-x. [DOI] [PubMed] [Google Scholar]
- Sangster N. C., Mettrick D. F. Effects of 5-hydroxytryptamine, cyclic AMP, AMP, and fructose 2,6-bisphosphate on phosphofructokinase activity in Hymenolepis diminuta. Comp Biochem Physiol B. 1987;88(1):317–321. doi: 10.1016/0305-0491(87)90122-2. [DOI] [PubMed] [Google Scholar]
- Shook D. R., Johnson T. E. Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions, pleiotropy and epistasis. Genetics. 1999 Nov;153(3):1233–1243. doi: 10.1093/genetics/153.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starke W. A., Oaks J. A. Ileal mucosal mast cell, eosinophil, and goblet cell populations during Hymenolepis diminuta infection of the rat. J Parasitol. 2001 Oct;87(5):1222–1225. doi: 10.1645/0022-3395(2001)087[1222:IMMCEA]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
- Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wade M. J., Goodnight C. J. Wright's shifting balance theory: an experimental study. Science. 1991 Aug 30;253(5023):1015–1018. doi: 10.1126/science.1887214. [DOI] [PubMed] [Google Scholar]
- Xiao J., Li J., Yuan L., Tanksley S. D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics. 1995 Jun;140(2):745–754. doi: 10.1093/genetics/140.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan G., Norman S. Infection of Tribolium beetles with a tapeworm: variation in susceptibility within and between beetle species and among genetic strains. J Parasitol. 1995 Feb;81(1):37–42. [PubMed] [Google Scholar]
- Yu S. B., Li J. X., Xu C. G., Tan Y. F., Gao Y. J., Li X. H., Zhang Q., Saghai Maroof M. A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9226–9231. doi: 10.1073/pnas.94.17.9226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- deVicente M. C., Tanksley S. D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993 Jun;134(2):585–596. doi: 10.1093/genetics/134.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
