Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1599–1605. doi: 10.1093/genetics/165.3.1599

Rank-based statistical methodologies for quantitative trait locus mapping.

Fei Zou 1, Brian S Yandell 1, Jason P Fine 1
PMCID: PMC1462811  PMID: 14668406

Abstract

This article addresses the identification of genetic loci (QTL and elsewhere) that influence nonnormal quantitative traits with focus on experimental crosses. QTL mapping is typically based on the assumption that the traits follow normal distributions, which may not be true in practice. Model-free tests have been proposed. However, nonparametric estimation of genetic effects has not been studied. We propose an estimation procedure based on the linear rank test statistics. The properties of the new procedure are compared with those of traditional likelihood-based interval mapping and regression interval mapping via simulations and a real data example. The results indicate that the nonparametric method is a competitive alternative to the existing parametric methodologies.

Full Text

The Full Text of this article is available as a PDF (86.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyartchuk V. L., Broman K. W., Mosher R. E., D'Orazio S. E., Starnbach M. N., Dietrich W. F. Multigenic control of Listeria monocytogenes susceptibility in mice. Nat Genet. 2001 Mar;27(3):259–260. doi: 10.1038/85812. [DOI] [PubMed] [Google Scholar]
  2. Broman Karl W. Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics. 2003 Mar;163(3):1169–1175. doi: 10.1093/genetics/163.3.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drinkwater N. R., Klotz J. H. Statistical methods for the analysis of tumor multiplicity data. Cancer Res. 1981 Jan;41(1):113–119. [PubMed] [Google Scholar]
  4. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  5. Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kruglyak L., Lander E. S. A nonparametric approach for mapping quantitative trait loci. Genetics. 1995 Mar;139(3):1421–1428. doi: 10.1093/genetics/139.3.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liu Y., Zeng Z. B. A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. Genet Res. 2000 Jun;75(3):345–355. doi: 10.1017/s0016672300004493. [DOI] [PubMed] [Google Scholar]
  10. Xu S. A comment on the simple regression method for interval mapping. Genetics. 1995 Dec;141(4):1657–1659. doi: 10.1093/genetics/141.4.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES