Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1127–1135. doi: 10.1093/genetics/165.3.1127

Patterns of selection against transposons inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans.

Carène Rizzon 1, Edwige Martin 1, Gabriel Marais 1, Laurent Duret 1, Laurent Ségalat 1, Christian Biémont 1
PMCID: PMC1462815  PMID: 14668370

Abstract

To identify the factors (selective or mutational) that affect the distribution of transposable elements (TEs) within a genome, it is necessary to compare the pattern of newly arising element insertions to the pattern of element insertions that have been fixed in a population. To do this, we analyzed the distribution of recent mutant insertions of the Tc1, Tc3, and Tc5 elements in a mut-7 background of the nematode Caenorhabditis elegans and compared it to the distribution of element insertions (presumably fixed) within the sequenced genome. Tc1 elements preferentially insert in regions with high recombination rates, whereas Tc3 and Tc5 do not. Although Tc1 and Tc3 both insert in TA dinucleotides, there is no clear relationship between the frequency of insertions and the TA dinucleotide density. There is a strong selection against TE insertions within coding regions: the probability that a TE will be fixed is at least 31 times lower in coding regions than in noncoding regions. Contrary to the prediction of theoretical models, we found that the selective pressure against TE insertions does not increase with the recombination rate. These findings indicate that the distribution of these three transposon families in the genome of C. elegans is determined essentially by just two factors: the pattern of insertions, which is a characteristic of each family, and the selection against insertions within coding regions.

Full Text

The Full Text of this article is available as a PDF (90.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartolomé Carolina, Maside Xulio, Charlesworth Brian. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol. 2002 Jun;19(6):926–937. doi: 10.1093/oxfordjournals.molbev.a004150. [DOI] [PubMed] [Google Scholar]
  2. Biémont C. Population genetics of transposable DNA elements. A Drosophila point of view. Genetica. 1992;86(1-3):67–84. doi: 10.1007/BF00133712. [DOI] [PubMed] [Google Scholar]
  3. Biémont C., Tsitrone A., Vieira C., Hoogland C. Transposable element distribution in Drosophila. Genetics. 1997 Dec;147(4):1997–1999. doi: 10.1093/genetics/147.4.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blumenstiel Justin P., Hartl Daniel L., Lozovsky Elena R. Patterns of insertion and deletion in contrasting chromatin domains. Mol Biol Evol. 2002 Dec;19(12):2211–2225. doi: 10.1093/oxfordjournals.molbev.a004045. [DOI] [PubMed] [Google Scholar]
  5. Borie N., Loevenbruck C., Biemont C. Developmental expression of the 412 retrotransposon in natural populations of D. melanogaster and D. simulans. Genet Res. 2000 Dec;76(3):217–226. doi: 10.1017/s0016672300004730. [DOI] [PubMed] [Google Scholar]
  6. Charlesworth B., Langley C. H., Sniegowski P. D. Transposable element distributions in Drosophila. Genetics. 1997 Dec;147(4):1993–1995. doi: 10.1093/genetics/147.4.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B., Lapid A., Canada D. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet Res. 1992 Oct;60(2):115–130. doi: 10.1017/s0016672300030809. [DOI] [PubMed] [Google Scholar]
  8. Charlesworth D., Wright S. I. Breeding systems and genome evolution. Curr Opin Genet Dev. 2001 Dec;11(6):685–690. doi: 10.1016/s0959-437x(00)00254-9. [DOI] [PubMed] [Google Scholar]
  9. Collins J. J., Anderson P. The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics. 1994 Jul;137(3):771–781. doi: 10.1093/genetics/137.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Collins J., Forbes E., Anderson P. The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics. 1989 Jan;121(1):47–55. doi: 10.1093/genetics/121.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duret L., Marais G., Biémont C. Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans. Genetics. 2000 Dec;156(4):1661–1669. doi: 10.1093/genetics/156.4.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  13. Hoogland C., Biémont C. Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number. Genetics. 1996 Sep;144(1):197–204. doi: 10.1093/genetics/144.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jordan I. King, Rogozin Igor B., Glazko Galina V., Koonin Eugene V. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 2003 Feb;19(2):68–72. doi: 10.1016/s0168-9525(02)00006-9. [DOI] [PubMed] [Google Scholar]
  15. Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000 Sep;16(9):418–420. doi: 10.1016/s0168-9525(00)02093-x. [DOI] [PubMed] [Google Scholar]
  16. Ketting R. F., Fischer S. E., Plasterk R. H. Target choice determinants of the Tc1 transposon of Caenorhabditis elegans. Nucleic Acids Res. 1997 Oct 15;25(20):4041–4047. doi: 10.1093/nar/25.20.4041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ketting R. F., Haverkamp T. H., van Luenen H. G., Plasterk R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 1999 Oct 15;99(2):133–141. doi: 10.1016/s0092-8674(00)81645-1. [DOI] [PubMed] [Google Scholar]
  18. Kliman R. M., Hey J. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol Biol Evol. 1993 Nov;10(6):1239–1258. doi: 10.1093/oxfordjournals.molbev.a040074. [DOI] [PubMed] [Google Scholar]
  19. Marais G., Mouchiroud D., Duret L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci U S A. 2001 Apr 24;98(10):5688–5692. doi: 10.1073/pnas.091427698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin Edwige, Laloux Hélène, Couette Gaëlle, Alvarez Thierry, Bessou Catherine, Hauser Oliver, Sookhareea Satis, Labouesse Michel, Ségalat Laurent. Identification of 1088 new transposon insertions of Caenorhabditis elegans: a pilot study toward large-scale screens. Genetics. 2002 Sep;162(1):521–524. doi: 10.1093/genetics/162.1.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan M. T. Transposable element number in mixed mating populations. Genet Res. 2001 Jun;77(3):261–275. doi: 10.1017/s0016672301005067. [DOI] [PubMed] [Google Scholar]
  22. Mori I., Benian G. M., Moerman D. G., Waterston R. H. Transposable element Tc1 of Caenorhabditis elegans recognizes specific target sequences for integration. Proc Natl Acad Sci U S A. 1988 Feb;85(3):861–864. doi: 10.1073/pnas.85.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nordborg M. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with partial self-fertilization. Genetics. 2000 Feb;154(2):923–929. doi: 10.1093/genetics/154.2.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nuzhdin S. V. Sure facts, speculations, and open questions about the evolution of transposable element copy number. Genetica. 1999;107(1-3):129–137. [PubMed] [Google Scholar]
  25. Oosumi T., Garlick B., Belknap W. R. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J Mol Evol. 1996 Jul;43(1):11–18. doi: 10.1007/BF02352294. [DOI] [PubMed] [Google Scholar]
  26. Rezsohazy R., van Luenen H. G., Durbin R. M., Plasterk R. H. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res. 1997 Oct 15;25(20):4048–4054. doi: 10.1093/nar/25.20.4048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rizzon Carène, Marais Gabriel, Gouy Manolo, Biémont Christian. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res. 2002 Mar;12(3):400–407. doi: 10.1101/gr.210802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robertson H. M., Lampe D. J. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol. 1995 Sep;12(5):850–862. doi: 10.1093/oxfordjournals.molbev.a040262. [DOI] [PubMed] [Google Scholar]
  29. Rosenzweig B., Liao L. W., Hirsh D. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 1983 Jun 25;11(12):4201–4209. doi: 10.1093/nar/11.12.4201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tomilin N. V. Control of genes by mammalian retroposons. Int Rev Cytol. 1999;186:1–48. doi: 10.1016/s0074-7696(08)61050-5. [DOI] [PubMed] [Google Scholar]
  31. Tu Zhijian, Shao Hongguang. Intra- and inter-specific diversity of Tc3-like transposons in nematodes and insects and implications for their evolution and transposition. Gene. 2002 Jan 9;282(1-2):133–142. doi: 10.1016/s0378-1119(01)00841-1. [DOI] [PubMed] [Google Scholar]
  32. Wicks S. R., de Vries C. J., van Luenen H. G., Plasterk R. H. CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev Biol. 2000 May 15;221(2):295–307. doi: 10.1006/dbio.2000.9686. [DOI] [PubMed] [Google Scholar]
  33. Wright S. I., Le Q. H., Schoen D. J., Bureau T. E. Population dynamics of an Ac-like transposable element in self- and cross-pollinating arabidopsis. Genetics. 2001 Jul;158(3):1279–1288. doi: 10.1093/genetics/158.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES