Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1117–1126. doi: 10.1093/genetics/165.3.1117

Quantitative classification and natural clustering of Caenorhabditis elegans behavioral phenotypes.

Wei Geng 1, Pamela Cosman 1, Joong-Hwan Baek 1, Charles C Berry 1, William R Schafer 1
PMCID: PMC1462821  PMID: 14668369

Abstract

Genetic analysis of nervous system function relies on the rigorous description of behavioral phenotypes. However, standard methods for classifying the behavioral patterns of mutant Caenorhabditis elegans rely on human observation and are therefore subjective and imprecise. Here we describe the application of machine learning to quantitatively define and classify the behavioral patterns of C. elegans nervous system mutants. We have used an automated tracking and image processing system to obtain measurements of a wide range of morphological and behavioral features from recordings of representative mutant types. Using principal component analysis, we represented the behavioral patterns of eight mutant types as data clouds distributed in multidimensional feature space. Cluster analysis using the k-means algorithm made it possible to quantitatively assess the relative similarities between different behavioral phenotypes and to identify natural phenotypic clusters among the data. Since the patterns of phenotypic similarity identified in this study closely paralleled the functional similarities of the mutant gene products, the complex phenotypic signatures obtained from these image data appeared to represent an effective diagnostic of the mutants' underlying molecular defects.

Full Text

The Full Text of this article is available as a PDF (298.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baek Joong-Hwan, Cosman Pamela, Feng Zhaoyang, Silver Jay, Schafer William R. Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J Neurosci Methods. 2002 Jul 30;118(1):9–21. doi: 10.1016/s0165-0270(02)00117-6. [DOI] [PubMed] [Google Scholar]
  2. Fleming J. T., Squire M. D., Barnes T. M., Tornoe C., Matsuda K., Ahnn J., Fire A., Sulston J. E., Barnard E. A., Sattelle D. B. Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci. 1997 Aug 1;17(15):5843–5857. doi: 10.1523/JNEUROSCI.17-15-05843.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fraser A. G., Kamath R. S., Zipperlen P., Martinez-Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature. 2000 Nov 16;408(6810):325–330. doi: 10.1038/35042517. [DOI] [PubMed] [Google Scholar]
  4. Hodgkin J. Male Phenotypes and Mating Efficiency in CAENORHABDITIS ELEGANS. Genetics. 1983 Jan;103(1):43–64. doi: 10.1093/genetics/103.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kim S. K., Lund J., Kiraly M., Duke K., Jiang M., Stuart J. M., Eizinger A., Wylie B. N., Davidson G. S. A gene expression map for Caenorhabditis elegans. Science. 2001 Sep 14;293(5537):2087–2092. doi: 10.1126/science.1061603. [DOI] [PubMed] [Google Scholar]
  6. Lee R. Y., Lobel L., Hengartner M., Horvitz H. R., Avery L. Mutations in the alpha1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 1997 Oct 15;16(20):6066–6076. doi: 10.1093/emboj/16.20.6066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mendel J. E., Korswagen H. C., Liu K. S., Hajdu-Cronin Y. M., Simon M. I., Plasterk R. H., Sternberg P. W. Participation of the protein Go in multiple aspects of behavior in C. elegans. Science. 1995 Mar 17;267(5204):1652–1655. doi: 10.1126/science.7886455. [DOI] [PubMed] [Google Scholar]
  8. Schafer W. R., Kenyon C. J. A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature. 1995 May 4;375(6526):73–78. doi: 10.1038/375073a0. [DOI] [PubMed] [Google Scholar]
  9. Schafer W. R., Sanchez B. M., Kenyon C. J. Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics. 1996 Jul;143(3):1219–1230. doi: 10.1093/genetics/143.3.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
  11. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  12. Ségalat L., Elkes D. A., Kaplan J. M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science. 1995 Mar 17;267(5204):1648–1651. doi: 10.1126/science.7886454. [DOI] [PubMed] [Google Scholar]
  13. Zipperlen P., Fraser A. G., Kamath R. S., Martinez-Campos M., Ahringer J. Roles for 147 embryonic lethal genes on C.elegans chromosome I identified by RNA interference and video microscopy. EMBO J. 2001 Aug 1;20(15):3984–3992. doi: 10.1093/emboj/20.15.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES