Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1619–1622. doi: 10.1093/genetics/165.3.1619

Effect of misoriented sites on neutrality tests with outgroup.

Emmanuelle Baudry 1, Frantz Depaulis 1
PMCID: PMC1462824  PMID: 14668409

Abstract

Several neutrality tests use outgroups to infer the ancestral and derived states for polymorphism data. However, homoplasy can result in the incorrect inference of the derived variant. We show that empirically derived rates of misorientation strongly influence Fay and Wu's H-test, especially when the sample size is large.

Full Text

The Full Text of this article is available as a PDF (74.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begun D. J., Whitley P. Reduced X-linked nucleotide polymorphism in Drosophila simulans. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5960–5965. doi: 10.1073/pnas.97.11.5960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frisse L., Hudson R. R., Bartoszewicz A., Wall J. D., Donfack J., Di Rienzo A. Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am J Hum Genet. 2001 Aug 29;69(4):831–843. doi: 10.1086/323612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gu X., Zhang J. A simple method for estimating the parameter of substitution rate variation among sites. Mol Biol Evol. 1997 Nov;14(11):1106–1113. doi: 10.1093/oxfordjournals.molbev.a025720. [DOI] [PubMed] [Google Scholar]
  6. Innan H., Tajima F. The amounts of nucleotide variation within and between allelic classes and the reconstruction of the common ancestral sequence in a population. Genetics. 1997 Nov;147(3):1431–1444. doi: 10.1093/genetics/147.3.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kawabe A., Miyashita N. T. DNA variation in the basic chitinase locus (ChiB) region of the wild plant Arabidopsis thaliana. Genetics. 1999 Nov;153(3):1445–1453. doi: 10.1093/genetics/153.3.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
  9. Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuittinen H., Aguadé M. Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana. Genetics. 2000 Jun;155(2):863–872. doi: 10.1093/genetics/155.2.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nachman M. W., Crowell S. L. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000 Sep;156(1):297–304. doi: 10.1093/genetics/156.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Olsen Kenneth M., Womack Andrew, Garrett Ashley R., Suddith Jane I., Purugganan Michael D. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics. 2002 Apr;160(4):1641–1650. doi: 10.1093/genetics/160.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Przeworski Molly. The signature of positive selection at randomly chosen loci. Genetics. 2002 Mar;160(3):1179–1189. doi: 10.1093/genetics/160.3.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rogers A. Error introduced by the infinite-site model. Mol Biol Evol. 1992 Nov;9(6):1181–1184. doi: 10.1093/oxfordjournals.molbev.a040787. [DOI] [PubMed] [Google Scholar]
  15. Savolainen O., Langley C. H., Lazzaro B. P., Fr H. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol. 2000 Apr;17(4):645–655. doi: 10.1093/oxfordjournals.molbev.a026343. [DOI] [PubMed] [Google Scholar]
  16. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  18. Yang Z., Kumar S., Nei M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics. 1995 Dec;141(4):1641–1650. doi: 10.1093/genetics/141.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yang Z., Yoder A. D. Estimation of the transition/transversion rate bias and species sampling. J Mol Evol. 1999 Mar;48(3):274–283. doi: 10.1007/pl00006470. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES