Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1167–1181. doi: 10.1093/genetics/165.3.1167

Study of dosage compensation in Drosophila.

Pei-Wen Chiang 1, David M Kurnit 1
PMCID: PMC1462830  PMID: 14668373

Abstract

Using a sensitive RT-QPCR assay, we analyzed the regulatory effects of sex and different dosage compensation mutations in Drosophila. To validate the assay, we showed that regulation for several genes indeed varied with the number of functional copies of that gene. We then confirmed that dosage compensation occurred for most genes we examined in male and female flies. Finally, we examined the effects on regulation of several genes in the MSL pathway, presumed to be involved in sex-dependent determination of regulation. Rather than seeing global alterations of either X chromosomal or autosomal genes, regulation of genes on either the X chromosome or the autosomes could be elevated, depressed, or unaltered between sexes in unpredictable ways for the various MSL mutations. Relative dosage for a given gene between the sexes could vary at different developmental times. Autosomal genes often showed deranged regulatory levels, indicating they were in pathways perturbed by X chromosomal changes. As exemplified by the BR-C locus and its dependent Sgs genes, multiple genes in a given pathway could exhibit coordinate regulatory modulation. The variegated pattern shown for expression of both X chromosomal and autosomal loci underscores the complexity of gene expression so that the phenotype of MSL mutations does not reflect only simple perturbations of genes on the X chromosome.

Full Text

The Full Text of this article is available as a PDF (843.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belyaeva E. S., Aizenzon M. G., Semeshin V. F., Kiss I. I., Koczka K., Baritcheva E. M., Gorelova T. D., Zhimulev I. F. Cytogenetic analysis of the 2B3-4--2B11 region of the X-chromosome of Drosophila melanogaster. I. Cytology of the region and mutant complementation groups. Chromosoma. 1980;81(2):281–306. doi: 10.1007/BF00285954. [DOI] [PubMed] [Google Scholar]
  2. Bhadra U., Pal-Bhadra M., Birchler J. A. Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics. 1999 May;152(1):249–268. doi: 10.1093/genetics/152.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birchler J. A. X chromosome dosage compensation in Drosophila. Science. 1996 May 24;272(5265):1190–1191. [PubMed] [Google Scholar]
  4. Breen T. R., Lucchesi J. C. Analysis of the dosage compensation of a specific transcript in Drosophila melanogaster. Genetics. 1986 Mar;112(3):483–491. doi: 10.1093/genetics/112.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiang P. W., Wei W. L., Gibson K., Bodmer R., Kurnit D. M. A fluorescent quantitative PCR approach to map gene deletions in the Drosophila genome. Genetics. 1999 Nov;153(3):1313–1316. doi: 10.1093/genetics/153.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Churchill G. A., Oliver B. Sex, flies and microarrays. Nat Genet. 2001 Dec;29(4):355–356. doi: 10.1038/ng1201-355. [DOI] [PubMed] [Google Scholar]
  7. Churchill Gary A. Fundamentals of experimental design for cDNA microarrays. Nat Genet. 2002 Dec;32 (Suppl):490–495. doi: 10.1038/ng1031. [DOI] [PubMed] [Google Scholar]
  8. Cline T. W., Meyer B. J. Vive la différence: males vs females in flies vs worms. Annu Rev Genet. 1996;30:637–702. doi: 10.1146/annurev.genet.30.1.637. [DOI] [PubMed] [Google Scholar]
  9. Fukunaga A., Tanaka A., Oishi K. Maleless, a recessive autosomal mutant of Drosophila melanogaster that specifically kills male zygotes. Genetics. 1975 Sep;81(1):135–141. doi: 10.1093/genetics/81.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gu W., Szauter P., Lucchesi J. C. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev Genet. 1998;22(1):56–64. doi: 10.1002/(SICI)1520-6408(1998)22:1<56::AID-DVG6>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  11. Guay P. S., Guild G. M. The ecdysone-induced puffing cascade in Drosophila salivary glands: a Broad-Complex early gene regulates intermolt and late gene transcription. Genetics. 1991 Sep;129(1):169–175. doi: 10.1093/genetics/129.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hiebert J. C., Birchler J. A. Effects of the maleless mutation on X and autosomal gene expression in Drosophila melanogaster. Genetics. 1994 Mar;136(3):913–926. doi: 10.1093/genetics/136.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hilfiker A., Hilfiker-Kleiner D., Pannuti A., Lucchesi J. C. mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 1997 Apr 15;16(8):2054–2060. doi: 10.1093/emboj/16.8.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jin W., Riley R. M., Wolfinger R. D., White K. P., Passador-Gurgel G., Gibson G. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet. 2001 Dec;29(4):389–395. doi: 10.1038/ng766. [DOI] [PubMed] [Google Scholar]
  15. Karim F. D., Guild G. M., Thummel C. S. The Drosophila Broad-Complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development. 1993 Jul;118(3):977–988. doi: 10.1242/dev.118.3.977. [DOI] [PubMed] [Google Scholar]
  16. Kelley R. L., Kuroda M. I. Equality for X chromosomes. Science. 1995 Dec 8;270(5242):1607–1610. doi: 10.1126/science.270.5242.1607. [DOI] [PubMed] [Google Scholar]
  17. Kernan M. J., Kuroda M. I., Kreber R., Baker B. S., Ganetzky B. napts, a mutation affecting sodium channel activity in Drosophila, is an allele of mle, a regulator of X chromosome transcription. Cell. 1991 Sep 6;66(5):949–959. doi: 10.1016/0092-8674(91)90440-a. [DOI] [PubMed] [Google Scholar]
  18. Lee C. G., Chang K. A., Kuroda M. I., Hurwitz J. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 1997 May 15;16(10):2671–2681. doi: 10.1093/emboj/16.10.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lucchesi J. C. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr Opin Genet Dev. 1998 Apr;8(2):179–184. doi: 10.1016/s0959-437x(98)80139-1. [DOI] [PubMed] [Google Scholar]
  20. Renault N., King-Jones K., Lehmann M. Downregulation of the tissue-specific transcription factor Fork head by Broad-Complex mediates a stage-specific hormone response. Development. 2001 Oct;128(19):3729–3737. doi: 10.1242/dev.128.19.3729. [DOI] [PubMed] [Google Scholar]
  21. Richter L., Bone J. R., Kuroda M. I. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells. 1996 Mar;1(3):325–336. doi: 10.1046/j.1365-2443.1996.26027.x. [DOI] [PubMed] [Google Scholar]
  22. Roberts D. B., Evans-Roberts S. The X-linked alpha-chain gene of Drosophila LSP-1 does not show dosage compensation. Nature. 1979 Aug 23;280(5724):691–692. doi: 10.1038/280691a0. [DOI] [PubMed] [Google Scholar]
  23. Schena M., Shalon D., Davis R. W., Brown P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995 Oct 20;270(5235):467–470. doi: 10.1126/science.270.5235.467. [DOI] [PubMed] [Google Scholar]
  24. Stuckenholz C., Kageyama Y., Kuroda M. I. Guilt by association: non-coding RNAs, chromosome-specific proteins and dosage compensation in Drosophila. Trends Genet. 1999 Nov;15(11):454–458. doi: 10.1016/s0168-9525(99)01855-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES