Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1417–1432. doi: 10.1093/genetics/165.3.1417

Genetic interactions between the RhoA and Stubble-stubbloid loci suggest a role for a type II transmembrane serine protease in intracellular signaling during Drosophila imaginal disc morphogenesis.

Cynthia A Bayer 1, Susan R Halsell 1, James W Fristrom 1, Daniel P Kiehart 1, Laurence von Kalm 1
PMCID: PMC1462831  PMID: 14668391

Abstract

The Drosophila RhoA (Rho1) GTPase is essential for postembryonic morphogenesis of leg and wing imaginal discs. Mutations in RhoA enhance leg and wing defects associated with mutations in zipper, the gene encoding the heavy chain of nonmuscle myosin II. We demonstrate here that mutations affecting the RhoA signaling pathway also interact genetically with mutations in the Stubble-stubbloid (Sb-sbd) locus that encodes an unusual type II transmembrane serine protease required for normal leg and wing morphogenesis. In addition, a leg malformation phenotype associated with overexpression of Sb-sbd in prepupal leg discs is suppressed when RhoA gene dose is reduced, suggesting that RhoA and Sb-sbd act in a common pathway during leg morphogenesis. We also characterized six mutations identified as enhancers of zipper mutant leg defects. Three of these genes encode known members of the RhoA signaling pathway (RhoA, DRhoGEF2, and zipper). The remaining three enhancer of zipper mutations interact genetically with both RhoA and Sb-sbd mutations, suggesting that they encode additional components of the RhoA signaling pathway in imaginal discs. Our results provide evidence that the type II transmembrane serine proteases, a class of proteins linked to human developmental abnormalities and pathology, may be associated with intracellular signaling required for normal development.

Full Text

The Full Text of this article is available as a PDF (177.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano M., Ito M., Kimura K., Fukata Y., Chihara K., Nakano T., Matsuura Y., Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996 Aug 23;271(34):20246–20249. doi: 10.1074/jbc.271.34.20246. [DOI] [PubMed] [Google Scholar]
  2. Andres A. J., Fletcher J. C., Karim F. D., Thummel C. S. Molecular analysis of the initiation of insect metamorphosis: a comparative study of Drosophila ecdysteroid-regulated transcription. Dev Biol. 1993 Dec;160(2):388–404. doi: 10.1006/dbio.1993.1315. [DOI] [PubMed] [Google Scholar]
  3. Andres A. J., Thummel C. S. Hormones, puffs and flies: the molecular control of metamorphosis by ecdysone. Trends Genet. 1992 Apr;8(4):132–138. doi: 10.1016/0168-9525(92)90371-A. [DOI] [PubMed] [Google Scholar]
  4. Appel L. F., Prout M., Abu-Shumays R., Hammonds A., Garbe J. C., Fristrom D., Fristrom J. The Drosophila Stubble-stubbloid gene encodes an apparent transmembrane serine protease required for epithelial morphogenesis. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4937–4941. doi: 10.1073/pnas.90.11.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrett K., Leptin M., Settleman J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell. 1997 Dec 26;91(7):905–915. doi: 10.1016/s0092-8674(00)80482-1. [DOI] [PubMed] [Google Scholar]
  6. Bartles J. R., Wierda A., Zheng L. Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J Cell Sci. 1996 Jun;109(Pt 6):1229–1239. doi: 10.1242/jcs.109.6.1229. [DOI] [PubMed] [Google Scholar]
  7. Bayer C. A., Holley B., Fristrom J. W. A switch in broad-complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Dev Biol. 1996 Jul 10;177(1):1–14. doi: 10.1006/dbio.1996.0140. [DOI] [PubMed] [Google Scholar]
  8. Bayer C. A., von Kalm L., Fristrom J. W. Relationships between protein isoforms and genetic functions demonstrate functional redundancy at the Broad-Complex during Drosophila metamorphosis. Dev Biol. 1997 Jul 15;187(2):267–282. doi: 10.1006/dbio.1997.8620. [DOI] [PubMed] [Google Scholar]
  9. Beaton A. H., Kiss I., Fristrom D., Fristrom J. W. Interaction of the Stubble-stubbloid locus and the Broad-complex of Drosophila melanogaster. Genetics. 1988 Oct;120(2):453–464. doi: 10.1093/genetics/120.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bement W. M., Mandato C. A., Kirsch M. N. Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr Biol. 1999 Jun 3;9(11):579–587. doi: 10.1016/s0960-9822(99)80261-9. [DOI] [PubMed] [Google Scholar]
  11. Bloor James W., Kiehart Daniel P. Drosophila RhoA regulates the cytoskeleton and cell-cell adhesion in the developing epidermis. Development. 2002 Jul;129(13):3173–3183. doi: 10.1242/dev.129.13.3173. [DOI] [PubMed] [Google Scholar]
  12. Boedigheimer M., Laughon A. Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development. 1993 Aug;118(4):1291–1301. doi: 10.1242/dev.118.4.1291. [DOI] [PubMed] [Google Scholar]
  13. Brock J., Midwinter K., Lewis J., Martin P. Healing of incisional wounds in the embryonic chick wing bud: characterization of the actin purse-string and demonstration of a requirement for Rho activation. J Cell Biol. 1996 Nov;135(4):1097–1107. doi: 10.1083/jcb.135.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bryan J., Edwards R., Matsudaira P., Otto J., Wulfkuhle J. Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9115–9119. doi: 10.1073/pnas.90.19.9115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Burridge K., Chrzanowska-Wodnicka M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol. 1996;12:463–518. doi: 10.1146/annurev.cellbio.12.1.463. [DOI] [PubMed] [Google Scholar]
  16. Burtis K. C., Thummel C. S., Jones C. W., Karim F. D., Hogness D. S. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell. 1990 Apr 6;61(1):85–99. doi: 10.1016/0092-8674(90)90217-3. [DOI] [PubMed] [Google Scholar]
  17. Cant K., Knowles B. A., Mooseker M. S., Cooley L. Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J Cell Biol. 1994 Apr;125(2):369–380. doi: 10.1083/jcb.125.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Clark H. F., Brentrup D., Schneitz K., Bieber A., Goodman C., Noll M. Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Genes Dev. 1995 Jun 15;9(12):1530–1542. doi: 10.1101/gad.9.12.1530. [DOI] [PubMed] [Google Scholar]
  19. Condic M. L., Fristrom D., Fristrom J. W. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development. 1991 Jan;111(1):23–33. doi: 10.1242/dev.111.1.23. [DOI] [PubMed] [Google Scholar]
  20. D'Avino P. P., Thummel C. S. crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis. Development. 1998 May;125(9):1733–1745. doi: 10.1242/dev.125.9.1733. [DOI] [PubMed] [Google Scholar]
  21. DiBello P. R., Withers D. A., Bayer C. A., Fristrom J. W., Guild G. M. The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics. 1991 Oct;129(2):385–397. doi: 10.1093/genetics/129.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Edwards K. A., Kiehart D. P. Drosophila nonmuscle myosin II has multiple essential roles in imaginal disc and egg chamber morphogenesis. Development. 1996 May;122(5):1499–1511. doi: 10.1242/dev.122.5.1499. [DOI] [PubMed] [Google Scholar]
  23. Fehon R. G., Dawson I. A., Artavanis-Tsakonas S. A Drosophila homologue of membrane-skeleton protein 4.1 is associated with septate junctions and is encoded by the coracle gene. Development. 1994 Mar;120(3):545–557. doi: 10.1242/dev.120.3.545. [DOI] [PubMed] [Google Scholar]
  24. Fletcher J. C., Burtis K. C., Hogness D. S., Thummel C. S. The Drosophila E74 gene is required for metamorphosis and plays a role in the polytene chromosome puffing response to ecdysone. Development. 1995 May;121(5):1455–1465. doi: 10.1242/dev.121.5.1455. [DOI] [PubMed] [Google Scholar]
  25. Fristrom D. The cellular basis of epithelial morphogenesis. A review. Tissue Cell. 1988;20(5):645–690. doi: 10.1016/0040-8166(88)90015-8. [DOI] [PubMed] [Google Scholar]
  26. Gates J., Thummel C. S. An enhancer trap screen for ecdysone-inducible genes required for Drosophila adult leg morphogenesis. Genetics. 2000 Dec;156(4):1765–1776. doi: 10.1093/genetics/156.4.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Geijsen N., van Delft S., Raaijmakers J. A., Lammers J. W., Collard J. G., Koenderman L., Coffer P. J. Regulation of p21rac activation in human neutrophils. Blood. 1999 Aug 1;94(3):1121–1130. [PubMed] [Google Scholar]
  28. Gotwals P. J., Fristrom J. W. Three neighboring genes interact with the Broad-Complex and the Stubble-stubbloid locus to affect imaginal disc morphogenesis in Drosophila. Genetics. 1991 Apr;127(4):747–759. doi: 10.1093/genetics/127.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Halsell S. R., Chu B. I., Kiehart D. P. Genetic analysis demonstrates a direct link between rho signaling and nonmuscle myosin function during Drosophila morphogenesis. Genetics. 2000 Jul;155(3):1253–1265. doi: 10.1093/genetics/155.3.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Halsell S. R., Kiehart D. P. Second-site noncomplementation identifies genomic regions required for Drosophila nonmuscle myosin function during morphogenesis. Genetics. 1998 Apr;148(4):1845–1863. doi: 10.1093/genetics/148.4.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Harden N., Ricos M., Ong Y. M., Chia W., Lim L. Participation of small GTPases in dorsal closure of the Drosophila embryo: distinct roles for Rho subfamily proteins in epithelial morphogenesis. J Cell Sci. 1999 Feb;112(Pt 3):273–284. doi: 10.1242/jcs.112.3.273. [DOI] [PubMed] [Google Scholar]
  32. Hooper J. D., Clements J. A., Quigley J. P., Antalis T. M. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem. 2001 Jan 12;276(2):857–860. doi: 10.1074/jbc.R000020200. [DOI] [PubMed] [Google Scholar]
  33. Karess R. E., Chang X. J., Edwards K. A., Kulkarni S., Aguilera I., Kiehart D. P. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell. 1991 Jun 28;65(7):1177–1189. doi: 10.1016/0092-8674(91)90013-o. [DOI] [PubMed] [Google Scholar]
  34. Kellenberger C., Hietter H., Luu B. Regioselective formation of the three disulfide bonds of a 35-residue insect peptide. Pept Res. 1995 Nov-Dec;8(6):321–327. [PubMed] [Google Scholar]
  35. Kiehart D. P. Wound healing: The power of the purse string. Curr Biol. 1999 Aug 26;9(16):R602–R605. doi: 10.1016/s0960-9822(99)80384-4. [DOI] [PubMed] [Google Scholar]
  36. Kiss I., Beaton A. H., Tardiff J., Fristrom D., Fristrom J. W. Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics. 1988 Feb;118(2):247–259. doi: 10.1093/genetics/118.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kojima S., Mishima M., Mabuchi I., Hotta Y. A single Drosophila melanogaster myosin light chain kinase gene produces multiple isoforms whose activities are differently regulated. Genes Cells. 1996 Sep;1(9):855–871. doi: 10.1046/j.1365-2443.1996.720272.x. [DOI] [PubMed] [Google Scholar]
  38. Kong W., McConalogue K., Khitin L. M., Hollenberg M. D., Payan D. G., Böhm S. K., Bunnett N. W. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8884–8889. doi: 10.1073/pnas.94.16.8884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kozma R., Sarner S., Ahmed S., Lim L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol. 1997 Mar;17(3):1201–1211. doi: 10.1128/mcb.17.3.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kraut R., Campos-Ortega J. A. inscuteable, a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev Biol. 1996 Feb 25;174(1):65–81. doi: 10.1006/dbio.1996.0052. [DOI] [PubMed] [Google Scholar]
  41. Magie C. R., Meyer M. R., Gorsuch M. S., Parkhurst S. M. Mutations in the Rho1 small GTPase disrupt morphogenesis and segmentation during early Drosophila development. Development. 1999 Dec;126(23):5353–5364. doi: 10.1242/dev.126.23.5353. [DOI] [PubMed] [Google Scholar]
  42. Nusrat A., Giry M., Turner J. R., Colgan S. P., Parkos C. A., Carnes D., Lemichez E., Boquet P., Madara J. L. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10629–10633. doi: 10.1073/pnas.92.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Odell G. M., Oster G., Alberch P., Burnside B. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol. 1981 Jul 30;85(2):446–462. doi: 10.1016/0012-1606(81)90276-1. [DOI] [PubMed] [Google Scholar]
  44. Petersen N. S., Lankenau D. H., Mitchell H. K., Young P., Corces V. G. forked proteins are components of fiber bundles present in developing bristles of Drosophila melanogaster. Genetics. 1994 Jan;136(1):173–182. doi: 10.1093/genetics/136.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Saxton W. M., Hicks J., Goldstein L. S., Raff E. C. Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell. 1991 Mar 22;64(6):1093–1102. doi: 10.1016/0092-8674(91)90264-y. [DOI] [PubMed] [Google Scholar]
  46. Seabra M. C. Membrane association and targeting of prenylated Ras-like GTPases. Cell Signal. 1998 Mar;10(3):167–172. doi: 10.1016/s0898-6568(97)00120-4. [DOI] [PubMed] [Google Scholar]
  47. Strutt D. I., Weber U., Mlodzik M. The role of RhoA in tissue polarity and Frizzled signalling. Nature. 1997 May 15;387(6630):292–295. doi: 10.1038/387292a0. [DOI] [PubMed] [Google Scholar]
  48. Tan J. L., Ravid S., Spudich J. A. Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem. 1992;61:721–759. doi: 10.1146/annurev.bi.61.070192.003445. [DOI] [PubMed] [Google Scholar]
  49. Tilney L. G., Tilney M. S., Guild G. M. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling. J Cell Biol. 1995 Aug;130(3):629–638. doi: 10.1083/jcb.130.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tohtong R., Rodriguez D., Maughan D., Simcox A. Analysis of cDNAs encoding Drosophila melanogaster myosin light chain kinase. J Muscle Res Cell Motil. 1997 Feb;18(1):43–56. doi: 10.1023/a:1018676832164. [DOI] [PubMed] [Google Scholar]
  51. Ward Robert E., Evans Janelle, Thummel Carl S. Genetic modifier screens in Drosophila demonstrate a role for Rho1 signaling in ecdysone-triggered imaginal disc morphogenesis. Genetics. 2003 Nov;165(3):1397–1415. doi: 10.1093/genetics/165.3.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Winter C. G., Wang B., Ballew A., Royou A., Karess R., Axelrod J. D., Luo L. Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. Cell. 2001 Apr 6;105(1):81–91. doi: 10.1016/s0092-8674(01)00298-7. [DOI] [PubMed] [Google Scholar]
  53. Young P. E., Richman A. M., Ketchum A. S., Kiehart D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 1993 Jan;7(1):29–41. doi: 10.1101/gad.7.1.29. [DOI] [PubMed] [Google Scholar]
  54. Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]
  55. von Kalm L., Fristrom D., Fristrom J. The making of a fly leg: a model for epithelial morphogenesis. Bioessays. 1995 Aug;17(8):693–702. doi: 10.1002/bies.950170806. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES