Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):961–974. doi: 10.1093/genetics/165.3.961

Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells.

Christina M Demlow 1, Thomas D Fox 1
PMCID: PMC1462836  PMID: 14668357

Abstract

We selected for increased phenotypic expression of a synthetic cox2::arg8m-G66S reporter gene inserted into Saccharomyces cerevisiae mtDNA in place of COX2. Recessive mutations in ras2 and cyr1, as well as elevated dosage of PDE2, allowed cox2::arg8m-G66S to support Arg prototrophy. Each of these genetic alterations should decrease cellular cAMP levels. The resulting signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p activity, as judged by growth phenotype. ras2 also caused increased fluorescence in cells carrying the synthetic cox3::GFPm reporter in mtDNA, but had little effect on the steady-state level of GFP polypeptide detected immunologically. Thus, decreased cAMP levels did not affect the synthesis of mitochondrially coded protein reporters in glucose-grown cells, but rather elevated activities in the matrix that promote efficient folding. Furthermore, we show that when Arg8p is synthesized in the cytoplasm and imported into mitochondria, it has greater activity than when it is synthesized in the matrix. Thus, mitochondrially synthesized proteins may not have the same access to matrix chaperones as cytoplasmically synthesized proteins emerging from the import apparatus.

Full Text

The Full Text of this article is available as a PDF (305.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  2. Boy-Marcotte E., Perrot M., Bussereau F., Boucherie H., Jacquet M. Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol. 1998 Mar;180(5):1044–1052. doi: 10.1128/jb.180.5.1044-1052.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boy-Marcotte E., Tadi D., Perrot M., Boucherie H., Jacquet M. High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae. Microbiology. 1996 Mar;142(Pt 3):459–467. doi: 10.1099/13500872-142-3-459. [DOI] [PubMed] [Google Scholar]
  4. Breviario D., Hinnebusch A., Cannon J., Tatchell K., Dhar R. Carbon source regulation of RAS1 expression in Saccharomyces cerevisiae and the phenotypes of ras2- cells. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4152–4156. doi: 10.1073/pnas.83.12.4152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brody L. C., Mitchell G. A., Obie C., Michaud J., Steel G., Fontaine G., Robert M. F., Sipila I., Kaiser-Kupfer M., Valle D. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol Chem. 1992 Feb 15;267(5):3302–3307. [PubMed] [Google Scholar]
  6. Brown N. G., Costanzo M. C., Fox T. D. Interactions among three proteins that specifically activate translation of the mitochondrial COX3 mRNA in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Feb;14(2):1045–1053. doi: 10.1128/mcb.14.2.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burns N., Grimwade B., Ross-Macdonald P. B., Choi E. Y., Finberg K., Roeder G. S., Snyder M. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 1994 May 1;8(9):1087–1105. doi: 10.1101/gad.8.9.1087. [DOI] [PubMed] [Google Scholar]
  8. Capaldi R. A. Structure and function of cytochrome c oxidase. Annu Rev Biochem. 1990;59:569–596. doi: 10.1146/annurev.bi.59.070190.003033. [DOI] [PubMed] [Google Scholar]
  9. Chen D. C., Yang B. C., Kuo T. T. One-step transformation of yeast in stationary phase. Curr Genet. 1992 Jan;21(1):83–84. doi: 10.1007/BF00318659. [DOI] [PubMed] [Google Scholar]
  10. Cohen J. S., Fox T. D. Expression of green fluorescent protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion. 2001 Aug;1(2):181–189. doi: 10.1016/s1567-7249(01)00012-5. [DOI] [PubMed] [Google Scholar]
  11. Cormack B. P., Valdivia R. H., Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996;173(1 Spec No):33–38. doi: 10.1016/0378-1119(95)00685-0. [DOI] [PubMed] [Google Scholar]
  12. Costanzo M. C., Fox T. D. Specific translational activation by nuclear gene products occurs in the 5' untranslated leader of a yeast mitochondrial mRNA. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2677–2681. doi: 10.1073/pnas.85.8.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dejean Laurent, Beauvoit Bertrand, Alonso Ana-Paula, Bunoust Odile, Guérin Bernard, Rigoulet Michel. cAMP-induced modulation of the growth yield of Saccharomyces cerevisiae during respiratory and respiro-fermentative metabolism. Biochim Biophys Acta. 2002 Jul 1;1554(3):159–169. doi: 10.1016/s0005-2728(02)00240-2. [DOI] [PubMed] [Google Scholar]
  14. Dejean Laurent, Beauvoit Bertrand, Bunoust Odile, Guérin Bernard, Rigoulet Michel. Activation of Ras cascade increases the mitochondrial enzyme content of respiratory competent yeast. Biochem Biophys Res Commun. 2002 May 24;293(5):1383–1388. doi: 10.1016/S0006-291X(02)00391-1. [DOI] [PubMed] [Google Scholar]
  15. Engebrecht J., Hirsch J., Roeder G. S. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell. 1990 Sep 7;62(5):927–937. doi: 10.1016/0092-8674(90)90267-i. [DOI] [PubMed] [Google Scholar]
  16. Fox T. D., Folley L. S., Mulero J. J., McMullin T. W., Thorsness P. E., Hedin L. O., Costanzo M. C. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 1991;194:149–165. doi: 10.1016/0076-6879(91)94013-3. [DOI] [PubMed] [Google Scholar]
  17. Fölsch H., Gaume B., Brunner M., Neupert W., Stuart R. A. C- to N-terminal translocation of preproteins into mitochondria. EMBO J. 1998 Nov 16;17(22):6508–6515. doi: 10.1093/emboj/17.22.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geier B. M., Schägger H., Ortwein C., Link T. A., Hagen W. R., Brandt U., Von Jagow G. Kinetic properties and ligand binding of the eleven-subunit cytochrome-c oxidase from Saccharomyces cerevisiae isolated with a novel large-scale purification method. Eur J Biochem. 1995 Jan 15;227(1-2):296–302. doi: 10.1111/j.1432-1033.1995.tb20388.x. [DOI] [PubMed] [Google Scholar]
  19. Green-Willms N. S., Butler C. A., Dunstan H. M., Fox T. D. Pet111p, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2. J Biol Chem. 2000 Dec 5;276(9):6392–6397. doi: 10.1074/jbc.M009856200. [DOI] [PubMed] [Google Scholar]
  20. Hallberg E. M., Shu Y., Hallberg R. L. Loss of mitochondrial hsp60 function: nonequivalent effects on matrix-targeted and intermembrane-targeted proteins. Mol Cell Biol. 1993 May;13(5):3050–3057. doi: 10.1128/mcb.13.5.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. He S., Fox T. D. Mutations affecting a yeast mitochondrial inner membrane protein, pnt1p, block export of a mitochondrially synthesized fusion protein from the matrix. Mol Cell Biol. 1999 Oct;19(10):6598–6607. doi: 10.1128/mcb.19.10.6598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Heimberg H., Boyen A., Crabeel M., Glansdorff N. Escherichia coli and Saccharomyces cerevisiae acetylornithine aminotransferase: evolutionary relationship with ornithine aminotransferase. Gene. 1990 May 31;90(1):69–78. doi: 10.1016/0378-1119(90)90440-3. [DOI] [PubMed] [Google Scholar]
  23. Henry S. A., Donahue T. F., Culbertson M. R. Selection of spontaneous mutants by inositol starvation in yeast. Mol Gen Genet. 1975 Dec 30;143(1):5–11. doi: 10.1007/BF00269415. [DOI] [PubMed] [Google Scholar]
  24. Herrmann J. M., Stuart R. A., Craig E. A., Neupert W. Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J Cell Biol. 1994 Nov;127(4):893–902. doi: 10.1083/jcb.127.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. doi: 10.1002/yea.320020304. [DOI] [PubMed] [Google Scholar]
  26. Klanner C., Neupert W., Langer T. The chaperonin-related protein Tcm62p ensures mitochondrial gene expression under heat stress. FEBS Lett. 2000 Mar 31;470(3):365–369. doi: 10.1016/s0014-5793(00)01322-3. [DOI] [PubMed] [Google Scholar]
  27. Koehler C. M. Protein translocation pathways of the mitochondrion. FEBS Lett. 2000 Jun 30;476(1-2):27–31. doi: 10.1016/s0014-5793(00)01664-1. [DOI] [PubMed] [Google Scholar]
  28. Krzewska J., Langer T., Liberek K. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett. 2001 Jan 26;489(1):92–96. doi: 10.1016/s0014-5793(00)02423-6. [DOI] [PubMed] [Google Scholar]
  29. Kunisawa R., Davis T. N., Urdea M. S., Thorner J. Complete nucleotide sequence of the gene encoding the regulatory subunit of 3',5'-cyclic AMP-dependent protein kinase from the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1987 Jan 12;15(1):368–369. doi: 10.1093/nar/15.1.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mabuchi T., Ichimura Y., Takeda M., Douglas M. G. ASC1/RAS2 suppresses the growth defect on glycerol caused by the atp1-2 mutation in the yeast Saccharomyces cerevisiae. J Biol Chem. 2000 Apr 7;275(14):10492–10497. doi: 10.1074/jbc.275.14.10492. [DOI] [PubMed] [Google Scholar]
  31. Madhani H. D., Styles C. A., Fink G. R. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell. 1997 Nov 28;91(5):673–684. doi: 10.1016/s0092-8674(00)80454-7. [DOI] [PubMed] [Google Scholar]
  32. Maliepaard M., Sitters K. A., de Mol N. J., Janssen L. H., Stratford I. J., Stephens M., Verboom W., Reinhoudt D. N. Potential antitumour mitosenes: relationship between in vitro DNA interstrand cross-link formation and DNA damage in Escherichia coli K-12 strains. Biochem Pharmacol. 1994 Oct 7;48(7):1371–1377. doi: 10.1016/0006-2952(94)90559-2. [DOI] [PubMed] [Google Scholar]
  33. Manthey G. M., McEwen J. E. The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J. 1995 Aug 15;14(16):4031–4043. doi: 10.1002/j.1460-2075.1995.tb00074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McEntee C. M., Cantwell R., Rahman M. U., Hudson A. P. Transcription of the yeast mitochondrial genome requires cyclic AMP. Mol Gen Genet. 1993 Oct;241(1-2):213–224. doi: 10.1007/BF00280219. [DOI] [PubMed] [Google Scholar]
  35. Moczko M., Schönfisch B., Voos W., Pfanner N., Rassow J. The mitochondrial ClpB homolog Hsp78 cooperates with matrix Hsp70 in maintenance of mitochondrial function. J Mol Biol. 1995 Dec 8;254(4):538–543. doi: 10.1006/jmbi.1995.0636. [DOI] [PubMed] [Google Scholar]
  36. Mulero J. J., Fox T. D. PET111 acts in the 5'-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation. Genetics. 1993 Mar;133(3):509–516. doi: 10.1093/genetics/133.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Naithani Sushma, Saracco Scott A., Butler Christine A., Fox Thomas D. Interactions among COX1, COX2, and COX3 mRNA-specific translational activator proteins on the inner surface of the mitochondrial inner membrane of Saccharomyces cerevisiae. Mol Biol Cell. 2003 Jan;14(1):324–333. doi: 10.1091/mbc.E02-08-0490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nasmyth K. A., Tatchell K. The structure of transposable yeast mating type loci. Cell. 1980 Mar;19(3):753–764. doi: 10.1016/s0092-8674(80)80051-1. [DOI] [PubMed] [Google Scholar]
  39. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pan X., Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4874–4887. doi: 10.1128/mcb.19.7.4874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pel H. J., Grivell L. A. Protein synthesis in mitochondria. Mol Biol Rep. 1994 May;19(3):183–194. doi: 10.1007/BF00986960. [DOI] [PubMed] [Google Scholar]
  42. Pfanner N., Geissler A. Versatility of the mitochondrial protein import machinery. Nat Rev Mol Cell Biol. 2001 May;2(5):339–349. doi: 10.1038/35073006. [DOI] [PubMed] [Google Scholar]
  43. Pinkham J. L., Dudley A. M., Mason T. L. T7 RNA polymerase-dependent expression of COXII in yeast mitochondria. Mol Cell Biol. 1994 Jul;14(7):4643–4652. doi: 10.1128/mcb.14.7.4643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Poyton R. O., McEwen J. E. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem. 1996;65:563–607. doi: 10.1146/annurev.bi.65.070196.003023. [DOI] [PubMed] [Google Scholar]
  45. Putrament A., Baranowska H., Prazmo W. Induction by manganese of mitochondrial antibiotic resistance mutations in yeast. Mol Gen Genet. 1973 Nov 22;126(4):357–366. doi: 10.1007/BF00269445. [DOI] [PubMed] [Google Scholar]
  46. Reid B. G., Flynn G. C. Chromophore formation in green fluorescent protein. Biochemistry. 1997 Jun 3;36(22):6786–6791. doi: 10.1021/bi970281w. [DOI] [PubMed] [Google Scholar]
  47. Robertson L. S., Causton H. C., Young R. A., Fink G. R. The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5984–5988. doi: 10.1073/pnas.100113397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sanchirico M. E., Fox T. D., Mason T. L. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J. 1998 Oct 1;17(19):5796–5804. doi: 10.1093/emboj/17.19.5796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sass P., Field J., Nikawa J., Toda T., Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9303–9307. doi: 10.1073/pnas.83.24.9303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shu Y., Hallberg R. L. SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein. Mol Cell Biol. 1995 Oct;15(10):5618–5626. doi: 10.1128/mcb.15.10.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Siebert P. D., Chenchik A., Kellogg D. E., Lukyanov K. A., Lukyanov S. A. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995 Mar 25;23(6):1087–1088. doi: 10.1093/nar/23.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Steele D. F., Butler C. A., Fox T. D. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5253–5257. doi: 10.1073/pnas.93.11.5253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Storici F., Lewis L. K., Resnick M. A. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001 Aug;19(8):773–776. doi: 10.1038/90837. [DOI] [PubMed] [Google Scholar]
  55. Sugajska E., Swiatek W., Zabrocki P., Geyskens I., Thevelein J. M., Zolnierowicz S., Wera S. Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2001 May;40(4):1020–1026. doi: 10.1046/j.1365-2958.2001.02449.x. [DOI] [PubMed] [Google Scholar]
  56. Thevelein J. M., de Winde J. H. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999 Sep;33(5):904–918. doi: 10.1046/j.1365-2958.1999.01538.x. [DOI] [PubMed] [Google Scholar]
  57. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., McMullen B., Hurwitz M., Krebs E. G., Wigler M. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Apr;7(4):1371–1377. doi: 10.1128/mcb.7.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Toda T., Cameron S., Sass P., Zoller M., Wigler M. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987 Jul 17;50(2):277–287. doi: 10.1016/0092-8674(87)90223-6. [DOI] [PubMed] [Google Scholar]
  59. Uno I., Mitsuzawa H., Tanaka K., Oshima T., Ishikawa T. Identification of the domain of Saccharomyces cerevisiae adenylate cyclase associated with the regulatory function of RAS products. Mol Gen Genet. 1987 Dec;210(2):187–194. doi: 10.1007/BF00325683. [DOI] [PubMed] [Google Scholar]
  60. Westermann B., Gaume B., Herrmann J. M., Neupert W., Schwarz E. Role of the mitochondrial DnaJ homolog Mdj1p as a chaperone for mitochondrially synthesized and imported proteins. Mol Cell Biol. 1996 Dec;16(12):7063–7071. doi: 10.1128/mcb.16.12.7063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zabrocki Piotr, Van Hoof Christine, Goris Jozef, Thevelein Johan M., Winderickx Joris, Wera Stefaan. Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Mol Microbiol. 2002 Feb;43(4):835–842. doi: 10.1046/j.1365-2958.2002.02786.x. [DOI] [PubMed] [Google Scholar]
  62. Zhao Y., Boguslawski G., Zitomer R. S., DePaoli-Roach A. A. Saccharomyces cerevisiae homologs of mammalian B and B' subunits of protein phosphatase 2A direct the enzyme to distinct cellular functions. J Biol Chem. 1997 Mar 28;272(13):8256–8262. doi: 10.1074/jbc.272.13.8256. [DOI] [PubMed] [Google Scholar]
  63. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES