Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1541–1550. doi: 10.1093/genetics/165.3.1541

Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines.

Hans E E Holtan 1, Sarah Hake 1
PMCID: PMC1462845  PMID: 14668401

Abstract

Leaves are one of the most conspicuous and important organs of all seed plants. A fundamental source of morphological diversity in leaves is the degree to which the leaf is dissected by lobes and leaflets. We used publicly available segmental introgression lines to describe the quantitative trait loci (QTL) controlling the difference in leaf dissection seen between two tomato species, Lycopersicon esculentum and L. pennellii. We define eight morphological characteristics that comprise the mature tomato leaf and describe loci that affect each of these characters. We found 30 QTL that contribute one or more of these characters. Of these 30 QTL, 22 primarily affect leaf dissection and 8 primarily affect leaf size. On the basis of which characters are affected, four classes of loci emerge that affect leaf dissection. The majority of the QTL produce phenotypes intermediate to the two parent lines, while 5 QTL result in transgression with drastically increased dissection relative to both parent lines.

Full Text

The Full Text of this article is available as a PDF (784.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avivi Y., Lev-Yadun S., Morozova N., Libs L., Williams L., Zhao J., Varghese G., Grafi G. Clausa, a tomato mutant with a wide range of phenotypic perturbations, displays a cell type-dependent expression of the homeobox gene LeT6/TKn2. Plant Physiol. 2000 Oct;124(2):541–552. doi: 10.1104/pp.124.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bharathan Geeta, Goliber Thomas E., Moore Christopher, Kessler Sharon, Pham Thinh, Sinha Neelima R. Homologies in leaf form inferred from KNOXI gene expression during development. Science. 2002 Jun 7;296(5574):1858–1860. doi: 10.1126/science.1070343. [DOI] [PubMed] [Google Scholar]
  3. Doebley J., Stec A., Hubbard L. The evolution of apical dominance in maize. Nature. 1997 Apr 3;386(6624):485–488. doi: 10.1038/386485a0. [DOI] [PubMed] [Google Scholar]
  4. Doebley J., Stec A. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics. 1993 Jun;134(2):559–570. doi: 10.1093/genetics/134.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eshed Y., Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics. 1995 Nov;141(3):1147–1162. doi: 10.1093/genetics/141.3.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frary A., Nesbitt T. C., Grandillo S., Knaap E., Cong B., Liu J., Meller J., Elber R., Alpert K. B., Tanksley S. D. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science. 2000 Jul 7;289(5476):85–88. doi: 10.1126/science.289.5476.85. [DOI] [PubMed] [Google Scholar]
  7. Goliber T., Kessler S., Chen J. J., Bharathan G., Sinha N. Genetic, molecular, and morphological analysis of compound leaf development. Curr Top Dev Biol. 1999;43:259–290. doi: 10.1016/s0070-2153(08)60384-1. [DOI] [PubMed] [Google Scholar]
  8. Hareven D., Gutfinger T., Parnis A., Eshed Y., Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell. 1996 Mar 8;84(5):735–744. doi: 10.1016/s0092-8674(00)81051-x. [DOI] [PubMed] [Google Scholar]
  9. Hay Angela, Kaur Hardip, Phillips Andrew, Hedden Peter, Hake Sarah, Tsiantis Miltos. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol. 2002 Sep 17;12(18):1557–1565. doi: 10.1016/s0960-9822(02)01125-9. [DOI] [PubMed] [Google Scholar]
  10. Janssen B. J., Williams A., Chen J. J., Mathern J., Hake S., Sinha N. Isolation and characterization of two knotted-like homeobox genes from tomato. Plant Mol Biol. 1998 Feb;36(3):417–425. doi: 10.1023/a:1005925508579. [DOI] [PubMed] [Google Scholar]
  11. Koltai H., Bird D. M. Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. Plant J. 2000 Jun;22(5):455–459. doi: 10.1046/j.1365-313x.2000.00754.x. [DOI] [PubMed] [Google Scholar]
  12. Pan Q., Liu Y. S., Budai-Hadrian O., Sela M., Carmel-Goren L., Zamir D., Fluhr R. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and arabidopsis. Genetics. 2000 May;155(1):309–322. doi: 10.1093/genetics/155.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paterson A. H., DeVerna J. W., Lanini B., Tanksley S. D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics. 1990 Mar;124(3):735–742. doi: 10.1093/genetics/124.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pérez-Pérez José Manuel, Serrano-Cartagena José, Micol José Luis. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics. 2002 Oct;162(2):893–915. doi: 10.1093/genetics/162.2.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tsiantis Miltos, Hay Angela. Comparative plant development: the time of the leaf? Nat Rev Genet. 2003 Mar;4(3):169–180. doi: 10.1038/nrg1002. [DOI] [PubMed] [Google Scholar]
  17. Westerbergh Anna, Doebley John. Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait loci. Evolution. 2002 Feb;56(2):273–283. doi: 10.1111/j.0014-3820.2002.tb01337.x. [DOI] [PubMed] [Google Scholar]
  18. deVicente M. C., Tanksley S. D. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993 Jun;134(2):585–596. doi: 10.1093/genetics/134.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES