Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1551–1568. doi: 10.1093/genetics/165.3.1551

A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags.

Naoki Tani 1, Tomokazu Takahashi 1, Hiroyoshi Iwata 1, Yuzuru Mukai 1, Tokuko Ujino-Ihara 1, Asako Matsumoto 1, Kensuke Yoshimura 1, Hiroshi Yoshimaru 1, Masafumi Murai 1, Kazutoshi Nagasaka 1, Yoshihiko Tsumura 1
PMCID: PMC1462850  PMID: 14668402

Abstract

A consensus map for sugi (Cryptomeria japonica) was constructed by integrating linkage data from two unrelated third-generation pedigrees, one derived from a full-sib cross and the other by self-pollination of F1 individuals. The progeny segregation data of the first pedigree were derived from cleaved amplified polymorphic sequences, microsatellites, restriction fragment length polymorphisms, and single nucleotide polymorphisms. The data of the second pedigree were derived from cleaved amplified polymorphic sequences, isozyme markers, morphological traits, random amplified polymorphic DNA markers, and restriction fragment length polymorphisms. Linkage analyses were done for the first pedigree with JoinMap 3.0, using its parameter set for progeny derived by cross-pollination, and for the second pedigree with the parameter set for progeny derived from selfing of F1 individuals. The 11 chromosomes of C. japonica are represented in the consensus map. A total of 438 markers were assigned to 11 large linkage groups, 1 small linkage group, and 1 nonintegrated linkage group from the second pedigree; their total length was 1372.2 cM. On average, the consensus map showed 1 marker every 3.0 cM. PCR-based codominant DNA markers such as cleaved amplified polymorphic sequences and microsatellite markers were distributed in all linkage groups and occupied about half of mapped loci. These markers are very useful for integration of different linkage maps, QTL mapping, and comparative mapping for evolutional study, especially for species with a large genome size such as conifers.

Full Text

The Full Text of this article is available as a PDF (395.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown G. R., Kadel E. E., 3rd, Bassoni D. L., Kiehne K. L., Temesgen B., van Buijtenen J. P., Sewell M. M., Marshall K. A., Neale D. B. Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics. 2001 Oct;159(2):799–809. doi: 10.1093/genetics/159.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butcher A., Williams R., Whitaker D., Ling S., Speed P., Moran F. Improving linkage analysis in outcrossed forest trees - an example from Acacia mangium. Theor Appl Genet. 2002 Mar 27;104(6-7):1185–1191. doi: 10.1007/s00122-001-0820-1. [DOI] [PubMed] [Google Scholar]
  3. Cervera M. T., Storme V., Ivens B., Gusmão J., Liu B. H., Hostyn V., Van Slycken J., Van Montagu M., Boerjan W. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics. 2001 Jun;158(2):787–809. doi: 10.1093/genetics/158.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chakravarti A., Lasher L. K., Reefer J. E. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics. 1991 May;128(1):175–182. doi: 10.1093/genetics/128.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gosselin I., Zhou Y., Bousquet J., Isabel N. Megagametophyte-derived linkage maps of white spruce ( Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet. 2002 Feb 13;104(6-7):987–997. doi: 10.1007/s00122-001-0823-y. [DOI] [PubMed] [Google Scholar]
  6. Grattapaglia D., Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994 Aug;137(4):1121–1137. doi: 10.1093/genetics/137.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanley S., Barker A., Van Ooijen W., Aldam C., Harris L., Ahman I., Larsson S., Karp A. A genetic linkage map of willow ( Salix viminalis) based on AFLP and microsatellite markers. Theor Appl Genet. 2002 Jun 22;105(6-7):1087–1096. doi: 10.1007/s00122-002-0979-0. [DOI] [PubMed] [Google Scholar]
  8. Helentjaris T., Weber D., Wright S. Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics. 1988 Feb;118(2):353–363. doi: 10.1093/genetics/118.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hulbert S. H., Ilott T. W., Legg E. J., Lincoln S. E., Lander E. S., Michelmore R. W. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics. 1988 Dec;120(4):947–958. doi: 10.1093/genetics/120.4.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kasha K. J., Kao K. N. High frequency haploid production in barley (Hordeum vulgare L.). Nature. 1970 Feb 28;225(5235):874–876. doi: 10.1038/225874a0. [DOI] [PubMed] [Google Scholar]
  11. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  12. Lange K., Boehnke M. How many polymorphic genes will it take to span the human genome? Am J Hum Genet. 1982 Nov;34(6):842–845. [PMC free article] [PubMed] [Google Scholar]
  13. Moriguchi Y., Iwata H., Ujino-Ihara T., Yoshimura K., Taira H., Tsumura Y. Development and characterization of microsatellite markers for Cryptomeria japonica D.Don. Theor Appl Genet. 2002 Nov 15;106(4):751–758. doi: 10.1007/s00122-002-1149-0. [DOI] [PubMed] [Google Scholar]
  14. Qi X., Stam P., Lindhout P. Comparison and integration of four barley genetic maps. Genome. 1996 Apr;39(2):379–394. doi: 10.1139/g96-049. [DOI] [PubMed] [Google Scholar]
  15. Remington D. L., O'Malley D. M. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics. 2000 May;155(1):337–348. doi: 10.1093/genetics/155.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ritter E., Gebhardt C., Salamini F. Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics. 1990 Jul;125(3):645–654. doi: 10.1093/genetics/125.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sewell M. M., Sherman B. K., Neale D. B. A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics. 1999 Jan;151(1):321–330. doi: 10.1093/genetics/151.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ujino-Ihara T., Yoshimura K., Ugawa Y., Yoshimaru H., Nagasaka K., Tsumura Y. Expression analysis of ESts derived from the inner bark of Cryptomeria japonica. Plant Mol Biol. 2000 Jul;43(4):451–457. doi: 10.1023/a:1006492103063. [DOI] [PubMed] [Google Scholar]
  19. Voorrips R. E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 2002 Jan-Feb;93(1):77–78. doi: 10.1093/jhered/93.1.77. [DOI] [PubMed] [Google Scholar]
  20. Xu Y., Zhu L., Xiao J., Huang N., McCouch S. R. Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet. 1997 Feb 20;253(5):535–545. doi: 10.1007/s004380050355. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES