Skip to main content
Genetics logoLink to Genetics
. 2003 Nov;165(3):1071–1081. doi: 10.1093/genetics/165.3.1071

The SONB(NUP98) nucleoporin interacts with the NIMA kinase in Aspergillus nidulans.

Colin P C De Souza 1, Kevin P Horn 1, Kathryn Masker 1, Stephen A Osmani 1
PMCID: PMC1462862  PMID: 14668365

Abstract

The Aspergillus nidulans NIMA kinase is essential for mitotic entry. At restrictive temperature, temperature-sensitive nimA alleles arrest in G2, before accumulation of NIMA in the nucleus. We performed a screen for extragenic suppressors of the nimA1 allele and isolated two cold-sensitive son (suppressor of nimA1) mutants. The sonA1 mutant encoded a nucleoporin that is a homolog of yeast Gle2/Rae1. We have now cloned SONB, a second nucleoporin genetically interacting with NIMA. sonB is essential and encodes a homolog of the human NUP98/NUP96 precursor. Similar to NUP98/NUP96, SONB(NUP98/NUP96) is autoproteolytically cleaved to generate SONB(NUP98) and SONB(NUP96). SONB(NUP98) localizes to the nuclear pore complex and contains a GLEBS domain (Gle2 binding sequence) that binds SONA(GLE2). A point mutation within the GLEBS domain of SONB1(NUP98) suppresses the temperature sensitivity of the nimA1 allele and compromises the physical interaction between SONA(GLE2) and SONB1(NUP98). The sonB1 mutation also causes sensitivity to hydroxyurea. We isolated the histone H2A-H2B gene pair as a copy-number suppressor of sonB1 cold sensitivity and hydroxyurea sensitivity. The data suggest that the nucleoporins SONA(GLE2) and SONB(NUP98) and the NIMA kinase interact and regulate nuclear accumulation of mitotic regulators to help promote mitosis.

Full Text

The Full Text of this article is available as a PDF (378.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevis Brooke J., Glick Benjamin S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol. 2002 Jan;20(1):83–87. doi: 10.1038/nbt0102-83. [DOI] [PubMed] [Google Scholar]
  2. Chook Y. M., Blobel G. Karyopherins and nuclear import. Curr Opin Struct Biol. 2001 Dec;11(6):703–715. doi: 10.1016/s0959-440x(01)00264-0. [DOI] [PubMed] [Google Scholar]
  3. Cronshaw Janet M., Krutchinsky Andrew N., Zhang Wenzhu, Chait Brian T., Matunis Michael J. Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol. 2002 Aug 26;158(5):915–927. doi: 10.1083/jcb.200206106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davis L. I., Blobel G. Identification and characterization of a nuclear pore complex protein. Cell. 1986 Jun 6;45(5):699–709. doi: 10.1016/0092-8674(86)90784-1. [DOI] [PubMed] [Google Scholar]
  5. De Souza C. P., Ye X. S., Osmani S. A. Checkpoint defects leading to premature mitosis also cause endoreplication of DNA in Aspergillus nidulans. Mol Biol Cell. 1999 Nov;10(11):3661–3674. doi: 10.1091/mbc.10.11.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doonan J. H., MacKintosh C., Osmani S., Cohen P., Bai G., Lee E. Y., Morris N. R. A cDNA encoding rabbit muscle protein phosphatase 1 alpha complements the Aspergillus cell cycle mutation, bimG11. J Biol Chem. 1991 Oct 5;266(28):18889–18894. [PubMed] [Google Scholar]
  7. Favreau C., Worman H. J., Wozniak R. W., Frappier T., Courvalin J. C. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry. 1996 Jun 18;35(24):8035–8044. doi: 10.1021/bi9600660. [DOI] [PubMed] [Google Scholar]
  8. Fernández-Abalos J. M., Fox H., Pitt C., Wells B., Doonan J. H. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol. 1998 Jan;27(1):121–130. doi: 10.1046/j.1365-2958.1998.00664.x. [DOI] [PubMed] [Google Scholar]
  9. Fontoura B. M., Blobel G., Matunis M. J. A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol. 1999 Mar 22;144(6):1097–1112. doi: 10.1083/jcb.144.6.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fontoura B. M., Dales S., Blobel G., Zhong H. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3208–3213. doi: 10.1073/pnas.061014698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galy V., Olivo-Marin J. C., Scherthan H., Doye V., Rascalou N., Nehrbass U. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature. 2000 Jan 6;403(6765):108–112. doi: 10.1038/47528. [DOI] [PubMed] [Google Scholar]
  12. Krien M. J., Bugg S. J., Palatsides M., Asouline G., Morimyo M., O'Connell M. J. A NIMA homologue promotes chromatin condensation in fission yeast. J Cell Sci. 1998 Apr;111(Pt 7):967–976. doi: 10.1242/jcs.111.7.967. [DOI] [PubMed] [Google Scholar]
  13. Krien Michael J. E., West Robert R., John Ulrik P., Koniaras Kalli, McIntosh J. Richard, O'Connell Matthew J. The fission yeast NIMA kinase Fin1p is required for spindle function and nuclear envelope integrity. EMBO J. 2002 Apr 2;21(7):1713–1722. doi: 10.1093/emboj/21.7.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lam D. H., Aplan P. D. NUP98 gene fusions in hematologic malignancies. Leukemia. 2001 Nov;15(11):1689–1695. doi: 10.1038/sj.leu.2402269. [DOI] [PubMed] [Google Scholar]
  15. Lu K. P., Hunter T. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell. 1995 May 5;81(3):413–424. doi: 10.1016/0092-8674(95)90394-1. [DOI] [PubMed] [Google Scholar]
  16. Lu K. P., Kemp B. E., Means A. R. Identification of substrate specificity determinants for the cell cycle-regulated NIMA protein kinase. J Biol Chem. 1994 Mar 4;269(9):6603–6607. [PubMed] [Google Scholar]
  17. Macaulay C., Meier E., Forbes D. J. Differential mitotic phosphorylation of proteins of the nuclear pore complex. J Biol Chem. 1995 Jan 6;270(1):254–262. doi: 10.1074/jbc.270.1.254. [DOI] [PubMed] [Google Scholar]
  18. Murphy R., Watkins J. L., Wente S. R. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol Biol Cell. 1996 Dec;7(12):1921–1937. doi: 10.1091/mbc.7.12.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Osherov N., May G. Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics. 2000 Jun;155(2):647–656. doi: 10.1093/genetics/155.2.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osmani A. H., van Peij N., Mischke M., O'Connell M. J., Osmani S. A. A single p34cdc2 protein kinase (encoded by nimXcdc2) is required at G1 and G2 in Aspergillus nidulans. J Cell Sci. 1994 Jun;107(Pt 6):1519–1528. doi: 10.1242/jcs.107.6.1519. [DOI] [PubMed] [Google Scholar]
  21. Powers M. A., Forbes D. J., Dahlberg J. E., Lund E. The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways. J Cell Biol. 1997 Jan 27;136(2):241–250. doi: 10.1083/jcb.136.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pritchard C. E., Fornerod M., Kasper L. H., van Deursen J. M. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol. 1999 Apr 19;145(2):237–254. doi: 10.1083/jcb.145.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pu R. T., Xu G., Wu L., Vierula J., O'Donnell K., Ye X. S., Osmani S. A. Isolation of a functional homolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues. J Biol Chem. 1995 Jul 28;270(30):18110–18116. doi: 10.1074/jbc.270.30.18110. [DOI] [PubMed] [Google Scholar]
  24. Radu A., Moore M. S., Blobel G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell. 1995 Apr 21;81(2):215–222. doi: 10.1016/0092-8674(95)90331-3. [DOI] [PubMed] [Google Scholar]
  25. Rosenblum J. S., Blobel G. Autoproteolysis in nucleoporin biogenesis. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11370–11375. doi: 10.1073/pnas.96.20.11370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rout M. P., Aitchison J. D., Suprapto A., Hjertaas K., Zhao Y., Chait B. T. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol. 2000 Feb 21;148(4):635–651. doi: 10.1083/jcb.148.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rout M. P., Aitchison J. D. The nuclear pore complex as a transport machine. J Biol Chem. 2001 Apr 5;276(20):16593–16596. doi: 10.1074/jbc.R100015200. [DOI] [PubMed] [Google Scholar]
  28. Ryan K. J., Wente S. R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr Opin Cell Biol. 2000 Jun;12(3):361–371. doi: 10.1016/s0955-0674(00)00101-0. [DOI] [PubMed] [Google Scholar]
  29. Teixeira M. T., Fabre E., Dujon B. Self-catalyzed cleavage of the yeast nucleoporin Nup145p precursor. J Biol Chem. 1999 Nov 5;274(45):32439–32444. doi: 10.1074/jbc.274.45.32439. [DOI] [PubMed] [Google Scholar]
  30. Ward I. M., Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001 Oct 22;276(51):47759–47762. doi: 10.1074/jbc.C100569200. [DOI] [PubMed] [Google Scholar]
  31. Wente S. R. Gatekeepers of the nucleus. Science. 2000 May 26;288(5470):1374–1377. doi: 10.1126/science.288.5470.1374. [DOI] [PubMed] [Google Scholar]
  32. West R. R., Vaisberg E. V., Ding R., Nurse P., McIntosh J. R. cut11(+): A gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation in Schizosaccharomyces pombe. Mol Biol Cell. 1998 Oct;9(10):2839–2855. doi: 10.1091/mbc.9.10.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Whalen W. A., Bharathi A., Danielewicz D., Dhar R. Advancement through mitosis requires rae1 gene function in fission yeast. Yeast. 1997 Sep 30;13(12):1167–1179. doi: 10.1002/(SICI)1097-0061(19970930)13:12<1167::AID-YEA154>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  34. Ye X. S., Fincher R. R., Tang A., O'Donnell K., Osmani S. A. Two S-phase checkpoint systems, one involving the function of both BIME and Tyr15 phosphorylation of p34cdc2, inhibit NIMA and prevent premature mitosis. EMBO J. 1996 Jul 15;15(14):3599–3610. [PMC free article] [PubMed] [Google Scholar]
  35. Ye X. S., Xu G., Pu R. T., Fincher R. R., McGuire S. L., Osmani A. H., Osmani S. A. The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordination of two mitosis promoting kinases. EMBO J. 1995 Mar 1;14(5):986–994. doi: 10.1002/j.1460-2075.1995.tb07079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES