Abstract
The maize leaf is composed of distinct regions with clear morphological boundaries. The ligule and auricle mark the boundary between distal blade and proximal sheath and are amenable to genetic study due to the array of mutants that affect their formation without severely affecting viability. Herein, we describe the novel maize gene extended auricle1 (eta1), which is essential for proper formation of the blade/sheath boundary. Homozygous eta1 individuals have a wavy overgrowth of auricle tissue and the blade/sheath boundary is diffuse. Double-mutant combinations of eta1 with genes in the knox and liguleless pathways result in synergistic and, in some cases, dosage-dependent interactions. While the phenotype of eta1 mutant individuals resembles that of dominant knox overexpression phenotypes, eta1 mutant leaves do not ectopically express knox genes. In addition, eta1 interacts synergistically with lg1 and lg2, but does not directly affect the transcription of either gene in leaf primordia. We present evidence based on genetic and molecular analyses that eta1 provides a downstream link between the knox and liguleless pathways.
Full Text
The Full Text of this article is available as a PDF (445.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becraft P. W., Bongard-Pierce D. K., Sylvester A. W., Poethig R. S., Freeling M. The liguleless-1 gene acts tissue specifically in maize leaf development. Dev Biol. 1990 Sep;141(1):220–232. doi: 10.1016/0012-1606(90)90117-2. [DOI] [PubMed] [Google Scholar]
- Becraft P. W., Freeling M. Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics. 1994 Jan;136(1):295–311. doi: 10.1093/genetics/136.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellaoui M., Pidkowich M. S., Samach A., Kushalappa K., Kohalmi S. E., Modrusan Z., Crosby W. L., Haughn G. W. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell. 2001 Nov;13(11):2455–2470. doi: 10.1105/tpc.010161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byrne M. E., Barley R., Curtis M., Arroyo J. M., Dunham M., Hudson A., Martienssen R. A. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature. 2000 Dec 21;408(6815):967–971. doi: 10.1038/35050091. [DOI] [PubMed] [Google Scholar]
- Byrne Mary E., Simorowski Joseph, Martienssen Robert A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development. 2002 Apr;129(8):1957–1965. doi: 10.1242/dev.129.8.1957. [DOI] [PubMed] [Google Scholar]
- Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster T., Yamaguchi J., Wong B. C., Veit B., Hake S. Gnarley1 is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. Plant Cell. 1999 Jul;11(7):1239–1252. doi: 10.1105/tpc.11.7.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler J. E., Freeling M. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Genet. 1996;18(3):198–222. doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
- Freeling M. A conceptual framework for maize leaf development. Dev Biol. 1992 Sep;153(1):44–58. doi: 10.1016/0012-1606(92)90090-4. [DOI] [PubMed] [Google Scholar]
- Freeling M., Hake S. Developmental genetics of mutants that specify knotted leaves in maize. Genetics. 1985 Nov;111(3):617–634. doi: 10.1093/genetics/111.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hake S., Vollbrecht E., Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J. 1989 Jan;8(1):15–22. doi: 10.1002/j.1460-2075.1989.tb03343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harper L., Freeling M. Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics. 1996 Dec;144(4):1871–1882. doi: 10.1093/genetics/144.4.1871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hay Angela, Kaur Hardip, Phillips Andrew, Hedden Peter, Hake Sarah, Tsiantis Miltos. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol. 2002 Sep 17;12(18):1557–1565. doi: 10.1016/s0960-9822(02)01125-9. [DOI] [PubMed] [Google Scholar]
- Kerstetter R. A., Laudencia-Chingcuanco D., Smith L. G., Hake S. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development. 1997 Aug;124(16):3045–3054. doi: 10.1242/dev.124.16.3045. [DOI] [PubMed] [Google Scholar]
- Li Y., Hagen G., Guilfoyle T. J. Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol. 1992 Oct;153(2):386–395. doi: 10.1016/0012-1606(92)90123-x. [DOI] [PubMed] [Google Scholar]
- Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
- Moreno M. A., Harper L. C., Krueger R. W., Dellaporta S. L., Freeling M. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev. 1997 Mar 1;11(5):616–628. doi: 10.1101/gad.11.5.616. [DOI] [PubMed] [Google Scholar]
- Muehlbauer G. J., Fowler J. E., Freeling M. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf. Development. 1997 Dec;124(24):5097–5106. doi: 10.1242/dev.124.24.5097. [DOI] [PubMed] [Google Scholar]
- Müller J., Wang Y., Franzen R., Santi L., Salamini F., Rohde W. In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. Plant J. 2001 Jul;27(1):13–23. doi: 10.1046/j.1365-313x.2001.01064.x. [DOI] [PubMed] [Google Scholar]
- Ori N., Eshed Y., Chuck G., Bowman J. L., Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development. 2000 Dec;127(24):5523–5532. doi: 10.1242/dev.127.24.5523. [DOI] [PubMed] [Google Scholar]
- Ori N., Juarez M. T., Jackson D., Yamaguchi J., Banowetz G. M., Hake S. Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell. 1999 Jun;11(6):1073–1080. [PMC free article] [PubMed] [Google Scholar]
- Poethig R. S. Heterochronic mutations affecting shoot development in maize. Genetics. 1988 Aug;119(4):959–973. doi: 10.1093/genetics/119.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S., Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001 Mar 1;15(5):581–590. doi: 10.1101/gad.867901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scanlon M. J., Schneeberger R. G., Freeling M. The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development. 1996 Jun;122(6):1683–1691. doi: 10.1242/dev.122.6.1683. [DOI] [PubMed] [Google Scholar]
- Schneeberger R. G., Becraft P. W., Hake S., Freeling M. Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 1995 Sep 15;9(18):2292–2304. doi: 10.1101/gad.9.18.2292. [DOI] [PubMed] [Google Scholar]
- Schneeberger R., Tsiantis M., Freeling M., Langdale J. A. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development. 1998 Aug;125(15):2857–2865. doi: 10.1242/dev.125.15.2857. [DOI] [PubMed] [Google Scholar]
- Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
- Sylvester A. W., Cande W. Z., Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development. Development. 1990 Nov;110(3):985–1000. doi: 10.1242/dev.110.3.985. [DOI] [PubMed] [Google Scholar]
- Theodoris George, Inada Noriko, Freeling Michael. Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc Natl Acad Sci U S A. 2003 May 15;100(11):6837–6842. doi: 10.1073/pnas.1132113100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timmermans M. C., Hudson A., Becraft P. W., Nelson T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science. 1999 Apr 2;284(5411):151–153. doi: 10.1126/science.284.5411.151. [DOI] [PubMed] [Google Scholar]
- Tsiantis M., Schneeberger R., Golz J. F., Freeling M., Langdale J. A. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science. 1999 Apr 2;284(5411):154–156. doi: 10.1126/science.284.5411.154. [DOI] [PubMed] [Google Scholar]
- Vollbrecht E., Reiser L., Hake S. Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development. 2000 Jul;127(14):3161–3172. doi: 10.1242/dev.127.14.3161. [DOI] [PubMed] [Google Scholar]
- Vollbrecht E., Veit B., Sinha N., Hake S. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature. 1991 Mar 21;350(6315):241–243. doi: 10.1038/350241a0. [DOI] [PubMed] [Google Scholar]
- Walsh J., Waters C. A., Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev. 1998 Jan 15;12(2):208–218. doi: 10.1101/gad.12.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
