Abstract
Methylphosphonate (MP) oligodeoxynucleotides (MPOs) are metabolically stable analogs of conventional DNA containing a methyl group in place of one of the non-bonding phosphoryl oxygens. All 16 possible chiral R(P) MP dinucleotides were synthesized and derivatized for automated oligonucleotide synthesis. These dimer synthons can be used to prepare (i) all-MP linked oligonucleotides having defined R(P) chirality at every other position (R(P) chirally enriched MPOs) or (ii) alternating R(P) MP/phosphodiester backbone oligonucleotides, depending on the composition of the 3'-coupling group. Chirally pure dimer synthons were also prepared with 2'-O-methyl sugar modifications. Oligonucleotides prepared with these R(P) chiral methylphosphonate linkage synthons bind RNA with significantly higher affinity than racemic MPOs.
Full Text
The Full Text of this article is available as a PDF (98.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal S., Mayrand S. H., Zamecnik P. C., Pederson T. Site-specific excision from RNA by RNase H and mixed-phosphate-backbone oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1401–1405. doi: 10.1073/pnas.87.4.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker T. R., Keough T., Dobson R. L., Riley T. A., Hasselfield J. A., Hesselberth P. E. Antisense DNA oligonucleotides. I: The use of ionspray tandem mass spectrometry for the sequence verification of methylphosphonate oligodeoxyribonucleotides. Rapid Commun Mass Spectrom. 1993 Mar;7(3):190–194. doi: 10.1002/rcm.1290070305. [DOI] [PubMed] [Google Scholar]
- Barabino S. M., Sproat B. S., Lamond A. I. Antisense probes targeted to an internal domain in U2 snRNP specifically inhibit the second step of pre-mRNA splicing. Nucleic Acids Res. 1992 Sep 11;20(17):4457–4464. doi: 10.1093/nar/20.17.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blake K. R., Murakami A., Spitz S. A., Glave S. A., Reddy M. P., Ts'o P. O., Miller P. S. Hybridization arrest of globin synthesis in rabbit reticulocyte lysates and cells by oligodeoxyribonucleoside methylphosphonates. Biochemistry. 1985 Oct 22;24(22):6139–6145. doi: 10.1021/bi00343a016. [DOI] [PubMed] [Google Scholar]
- Chang E. H., Miller P. S., Cushman C., Devadas K., Pirollo K. F., Ts'o P. O., Yu Z. P. Antisense inhibition of ras p21 expression that is sensitive to a point mutation. Biochemistry. 1991 Aug 27;30(34):8283–8286. doi: 10.1021/bi00098a001. [DOI] [PubMed] [Google Scholar]
- Chen T. L., Miller P. S., Ts'o P. O., Colvin O. M., Chem T. L. Disposition and metabolism of oligodeoxynucleoside methylphosphonate following a single i.v. injection in mice. Drug Metab Dispos. 1990 Sep-Oct;18(5):815–818. [PubMed] [Google Scholar]
- Conner B. N., Takano T., Tanaka S., Itakura K., Dickerson R. E. The molecular structure of d(ICpCpGpG), a fragment of right-handed double helical A-DNA. Nature. 1982 Jan 28;295(5847):294–299. doi: 10.1038/295294a0. [DOI] [PubMed] [Google Scholar]
- Dominski Z., Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8673–8677. doi: 10.1073/pnas.90.18.8673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egholm M., Buchardt O., Christensen L., Behrens C., Freier S. M., Driver D. A., Berg R. H., Kim S. K., Norden B., Nielsen P. E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature. 1993 Oct 7;365(6446):566–568. doi: 10.1038/365566a0. [DOI] [PubMed] [Google Scholar]
- Fathi R., Huang Q., Syi J. L., Delaney W., Cook A. F. (Aminomethyl)phosphonate derivatives of oligonucleotides. Bioconjug Chem. 1994 Jan-Feb;5(1):47–57. doi: 10.1021/bc00025a007. [DOI] [PubMed] [Google Scholar]
- Ferguson D. M., Kollman P. A. Application of free-energy decomposition to determine the relative stability of R and S oligodeoxyribonucleotide methylphosphonates. Antisense Res Dev. 1991 Fall;1(3):243–254. [PubMed] [Google Scholar]
- González C., Stec W., Kobylanska A., Hogrefe R. I., Reynolds M., James T. L. Structural study of a DNA.RNA hybrid duplex with a chiral phosphorothioate moiety by NMR: extraction of distance and torsion angle constraints and imino proton exchange rates. Biochemistry. 1994 Sep 20;33(37):11062–11072. doi: 10.1021/bi00203a002. [DOI] [PubMed] [Google Scholar]
- Hogrefe R. I., McCaffrey A. P., Borozdina L. U., McCampbell E. S., Vaghefi M. M. Effect of excess water on the desilylation of oligoribonucleotides using tetrabutylammonium fluoride. Nucleic Acids Res. 1993 Oct 11;21(20):4739–4741. doi: 10.1093/nar/21.20.4739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogrefe R. I., Reynolds M. A., Vaghefi M. M., Young K. M., Riley T. A., Klem R. E., Arnold L. J., Jr An improved method for the synthesis and deprotection of methylphosphonate oligonucleotides. Methods Mol Biol. 1993;20:143–164. doi: 10.1385/0-89603-281-7:143. [DOI] [PubMed] [Google Scholar]
- Hogrefe R. I., Vaghefi M. M., Reynolds M. A., Young K. M., Arnold L. J., Jr Deprotection of methylphosphonate oligonucleotides using a novel one-pot procedure. Nucleic Acids Res. 1993 May 11;21(9):2031–2038. doi: 10.1093/nar/21.9.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Bec Christine, Wickstrom Eric. Stereospecific Grignard-Activated Solid Phase Synthesis of DNA Methylphosphonate Dimers. J Org Chem. 1996 Jan 26;61(2):510–513. doi: 10.1021/jo9517499. [DOI] [PubMed] [Google Scholar]
- Lesnikowski Z. J., Jaworska M., Stec W. J. Octa(thymidine methanephosphonates) of partially defined stereochemistry: synthesis and effect of chirality at phosphorus on binding to pentadecadeoxyriboadenylic acid. Nucleic Acids Res. 1990 Apr 25;18(8):2109–2115. doi: 10.1093/nar/18.8.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesnikowski Z. J., Jaworska M., Stec W. J. Stereoselective synthesis of P-homochiral oligo(thymidine methanephosphonates). Nucleic Acids Res. 1988 Dec 23;16(24):11675–11689. doi: 10.1093/nar/16.24.11675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lima W. F., Monia B. P., Ecker D. J., Freier S. M. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry. 1992 Dec 8;31(48):12055–12061. doi: 10.1021/bi00163a013. [DOI] [PubMed] [Google Scholar]
- Löschner T., Engels J. W. Diastereomeric dinucleoside-methylphosphonates: determination of configuration with the 2-D NMR ROESY technique. Nucleic Acids Res. 1990 Sep 11;18(17):5083–5088. doi: 10.1093/nar/18.17.5083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maher L. J., 3rd, Dolnick B. J. Comparative hybrid arrest by tandem antisense oligodeoxyribonucleotides or oligodeoxyribonucleoside methylphosphonates in a cell-free system. Nucleic Acids Res. 1988 Apr 25;16(8):3341–3358. doi: 10.1093/nar/16.8.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami A., Blake K. R., Miller P. S. Characterization of sequence-specific oligodeoxyribonucleoside methylphosphonates and their interaction with rabbit globin mRNA. Biochemistry. 1985 Jul 16;24(15):4041–4046. doi: 10.1021/bi00336a036. [DOI] [PubMed] [Google Scholar]
- Niewiarowski W., Leśnikowski Z. J., Wilk A., Guga P., Okruszek A., Uznański B., Stec W. Diastereomers of thymidine 3'-O-(methanephosphonothioate): synthesis, absolute configuration and reaction with 3'-methoxyacetylthymidine under conditions of triester approach to oligonucleotide synthesis. Acta Biochim Pol. 1987;34(2):217–231. [PubMed] [Google Scholar]
- Patel T. P., Millican T. A., Bose C. C., Titmas R. C., Mock G. A., Eaton M. A. Improvements to solid phase phosphotriester synthesis of deoxyoligonucleotides. Nucleic Acids Res. 1982 Sep 25;10(18):5605–5620. doi: 10.1093/nar/10.18.5605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
- Puglisi J. D., Tinoco I., Jr Absorbance melting curves of RNA. Methods Enzymol. 1989;180:304–325. doi: 10.1016/0076-6879(89)80108-9. [DOI] [PubMed] [Google Scholar]
- Smith C. C., Aurelian L., Reddy M. P., Miller P. S., Ts'o P. O. Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type 1 immediate early pre-mRNAs 4 and 5. Proc Natl Acad Sci U S A. 1986 May;83(9):2787–2791. doi: 10.1073/pnas.83.9.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swarna Latha Y., Yathindra N. Molecular mechanics studies of dinucleoside methylphosphonates: influence of methylphosphonate and its chirality on the phosphodiester conformation. J Biomol Struct Dyn. 1991 Dec;9(3):613–631. doi: 10.1080/07391102.1991.10507940. [DOI] [PubMed] [Google Scholar]
- Takeshima Y., Nishio H., Sakamoto H., Nakamura H., Matsuo M. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest. 1995 Feb;95(2):515–520. doi: 10.1172/JCI117693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaghefi M. M., Fazio R. C., Young K. M., Marvin W. B. Synthesis of 3H-labeled nucleoside-methyl[CT3]phosphonamidite and incorporation into methylphosphonate oligonucleotides for biodistribution and biostability studies. Nucleic Acids Res. 1995 Sep 11;23(17):3600–3602. doi: 10.1093/nar/23.17.3600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vyazovkina E. V., Savchenko E. V., Lokhov S. G., Engels J. W., Wickstrom E., Lebedev A. V. Synthesis of specific diastereomers of a DNA methylphosphonate heptamer, d(CpCpApApApCpA), and stability of base pairing with the normal DNA octamer d(TPGPTPTPTPGPGPC). Nucleic Acids Res. 1994 Jun 25;22(12):2404–2409. doi: 10.1093/nar/22.12.2404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickstrom E., Bacon T. A., Wickstrom E. L. Down-regulation of c-MYC antigen expression in lymphocytes of Emu-c-myc transgenic mice treated with anti-c-myc DNA methylphosphonates. Cancer Res. 1992 Dec 15;52(24):6741–6745. [PubMed] [Google Scholar]