Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):1805–1822. doi: 10.1093/genetics/165.4.1805

Caenorhabditis elegans Galphaq regulates egg-laying behavior via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle.

Carol A Bastiani 1, Shahla Gharib 1, Melvin I Simon 1, Paul W Sternberg 1
PMCID: PMC1462877  PMID: 14704167

Abstract

egl-30 encodes the single C. elegans ortholog of vertebrate Galphaq family members. We analyzed the expression pattern of EGL-30 and found that it is broadly expressed, with highest expression in the nervous system and in pharyngeal muscle. We isolated dominant, gain-of-function alleles of egl-30 as intragenic revertants of an egl-30 reduction-of-function mutation. Using these gain-of-function mutants and existing reduction-of-function mutants, we examined the site and mode of action of EGL-30. On the basis of pharmacological analysis, it has been determined that egl-30 functions both in the nervous system and in the vulval muscles for egg-laying behavior. Genetic epistasis over mutations that eliminate detectable levels of serotonin reveals that egl-30 requires serotonin to regulate egg laying. Furthermore, pharmacological response assays strongly suggest that EGL-30 may directly couple to a serotonin receptor to mediate egg laying. We also examined genetic interactions with mutations in the gene that encodes the single C. elegans homolog of PLCbeta and mutations in genes that encode signaling molecules downstream of PLCbeta. We conclude that PLCbeta functions in parallel with egl-30 with respect to egg laying or is not the major effector of EGL-30. In contrast, PLCbeta-mediated signaling is likely downstream of EGL-30 with respect to pharyngeal-pumping behavior. Our data indicate that there are multiple signaling pathways downstream of EGL-30 and that different pathways could predominate with respect to the regulation of different behaviors.

Full Text

The Full Text of this article is available as a PDF (304.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amatruda T. T., 3rd, Steele D. A., Slepak V. Z., Simon M. I. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5587–5591. doi: 10.1073/pnas.88.13.5587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aravamudan B., Fergestad T., Davis W. S., Rodesch C. K., Broadie K. Drosophila UNC-13 is essential for synaptic transmission. Nat Neurosci. 1999 Nov;2(11):965–971. doi: 10.1038/14764. [DOI] [PubMed] [Google Scholar]
  3. Baylis H. A., Furuichi T., Yoshikawa F., Mikoshiba K., Sattelle D. B. Inositol 1,4,5-trisphosphate receptors are strongly expressed in the nervous system, pharynx, intestine, gonad and excretory cell of Caenorhabditis elegans and are encoded by a single gene (itr-1). J Mol Biol. 1999 Nov 26;294(2):467–476. doi: 10.1006/jmbi.1999.3229. [DOI] [PubMed] [Google Scholar]
  4. Betz A., Ashery U., Rickmann M., Augustin I., Neher E., Südhof T. C., Rettig J., Brose N. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron. 1998 Jul;21(1):123–136. doi: 10.1016/s0896-6273(00)80520-6. [DOI] [PubMed] [Google Scholar]
  5. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brundage L., Avery L., Katz A., Kim U. J., Mendel J. E., Sternberg P. W., Simon M. I. Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron. 1996 May;16(5):999–1009. doi: 10.1016/s0896-6273(00)80123-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bui Yen Kim, Sternberg Paul W. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell. 2002 May;13(5):1641–1651. doi: 10.1091/mbc.02-01-0008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clandinin T. R., DeModena J. A., Sternberg P. W. Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell. 1998 Feb 20;92(4):523–533. doi: 10.1016/s0092-8674(00)80945-9. [DOI] [PubMed] [Google Scholar]
  9. Dal Santo P., Logan M. A., Chisholm A. D., Jorgensen E. M. The inositol trisphosphate receptor regulates a 50-second behavioral rhythm in C. elegans. Cell. 1999 Sep 17;98(6):757–767. doi: 10.1016/s0092-8674(00)81510-x. [DOI] [PubMed] [Google Scholar]
  10. Desai C., Garriga G., McIntire S. L., Horvitz H. R. A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature. 1988 Dec 15;336(6200):638–646. doi: 10.1038/336638a0. [DOI] [PubMed] [Google Scholar]
  11. Desai C., Horvitz H. R. Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for egg laying. Genetics. 1989 Apr;121(4):703–721. doi: 10.1093/genetics/121.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doi Motomichi, Iwasaki Kouichi. Regulation of retrograde signaling at neuromuscular junctions by the novel C2 domain protein AEX-1. Neuron. 2002 Jan 17;33(2):249–259. doi: 10.1016/s0896-6273(01)00587-6. [DOI] [PubMed] [Google Scholar]
  13. Duerr J. S., Frisby D. L., Gaskin J., Duke A., Asermely K., Huddleston D., Eiden L. E., Rand J. B. The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. J Neurosci. 1999 Jan 1;19(1):72–84. doi: 10.1523/JNEUROSCI.19-01-00072.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ellis H. M., Horvitz H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986 Mar 28;44(6):817–829. doi: 10.1016/0092-8674(86)90004-8. [DOI] [PubMed] [Google Scholar]
  15. Exton J. H. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol. 1996;36:481–509. doi: 10.1146/annurev.pa.36.040196.002405. [DOI] [PubMed] [Google Scholar]
  16. Garcia L. R., Mehta P., Sternberg P. W. Regulation of distinct muscle behaviors controls the C. elegans male's copulatory spicules during mating. Cell. 2001 Dec 14;107(6):777–788. doi: 10.1016/s0092-8674(01)00600-6. [DOI] [PubMed] [Google Scholar]
  17. Garcia P. D., Onrust R., Bell S. M., Sakmar T. P., Bourne H. R. Transducin-alpha C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. EMBO J. 1995 Sep 15;14(18):4460–4469. doi: 10.1002/j.1460-2075.1995.tb00125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garriga G., Guenther C., Horvitz H. R. Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins. Genes Dev. 1993 Nov;7(11):2097–2109. doi: 10.1101/gad.7.11.2097. [DOI] [PubMed] [Google Scholar]
  19. Hamdan F. F., Ungrin M. D., Abramovitz M., Ribeiro P. Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem. 1999 Apr;72(4):1372–1383. doi: 10.1046/j.1471-4159.1999.721372.x. [DOI] [PubMed] [Google Scholar]
  20. Hamm H. E., Deretic D., Arendt A., Hargrave P. A., Koenig B., Hofmann K. P. Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science. 1988 Aug 12;241(4867):832–835. doi: 10.1126/science.3136547. [DOI] [PubMed] [Google Scholar]
  21. Han M., Sternberg P. W. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell. 1990 Nov 30;63(5):921–931. doi: 10.1016/0092-8674(90)90495-z. [DOI] [PubMed] [Google Scholar]
  22. Harfe B. D., Fire A. Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development. 1998 Feb;125(3):421–429. doi: 10.1242/dev.125.3.421. [DOI] [PubMed] [Google Scholar]
  23. Harfe B. D., Vaz Gomes A., Kenyon C., Liu J., Krause M., Fire A. Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev. 1998 Aug 15;12(16):2623–2635. doi: 10.1101/gad.12.16.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Horvitz H. R., Chalfie M., Trent C., Sulston J. E., Evans P. D. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science. 1982 May 28;216(4549):1012–1014. doi: 10.1126/science.6805073. [DOI] [PubMed] [Google Scholar]
  25. Iiri T., Herzmark P., Nakamoto J. M., van Dop C., Bourne H. R. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature. 1994 Sep 8;371(6493):164–168. doi: 10.1038/371164a0. [DOI] [PubMed] [Google Scholar]
  26. Ismaiel A. M., Titeler M., Miller K. J., Smith T. S., Glennon R. A. 5-HT1 and 5-HT2 binding profiles of the serotonergic agents alpha-methylserotonin and 2-methylserotonin. J Med Chem. 1990 Feb;33(2):755–758. doi: 10.1021/jm00164a046. [DOI] [PubMed] [Google Scholar]
  27. Kisselev O. G., Kao J., Ponder J. W., Fann Y. C., Gautam N., Marshall G. R. Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4270–4275. doi: 10.1073/pnas.95.8.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Launay J. M., Birraux G., Bondoux D., Callebert J., Choi D. S., Loric S., Maroteaux L. Ras involvement in signal transduction by the serotonin 5-HT2B receptor. J Biol Chem. 1996 Feb 9;271(6):3141–3147. doi: 10.1074/jbc.271.6.3141. [DOI] [PubMed] [Google Scholar]
  29. Lee C. H., Park D., Wu D., Rhee S. G., Simon M. I. Members of the Gq alpha subunit gene family activate phospholipase C beta isozymes. J Biol Chem. 1992 Aug 15;267(23):16044–16047. [PubMed] [Google Scholar]
  30. Lee S. B., Shin S. H., Hepler J. R., Gilman A. G., Rhee S. G. Activation of phospholipase C-beta 2 mutants by G protein alpha q and beta gamma subunits. J Biol Chem. 1993 Dec 5;268(34):25952–25957. [PubMed] [Google Scholar]
  31. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miller K. G., Alfonso A., Nguyen M., Crowell J. A., Johnson C. D., Rand J. B. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12593–12598. doi: 10.1073/pnas.93.22.12593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miller K. G., Emerson M. D., Rand J. B. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron. 1999 Oct;24(2):323–333. doi: 10.1016/s0896-6273(00)80847-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moghal Nadeem, Garcia L. Rene, Khan Liakot A., Iwasaki Kouichi, Sternberg Paul W. Modulation of EGF receptor-mediated vulva development by the heterotrimeric G-protein Galphaq and excitable cells in C. elegans. Development. 2003 Oct;130(19):4553–4566. doi: 10.1242/dev.00670. [DOI] [PubMed] [Google Scholar]
  35. Osawa S., Weiss E. R. The effect of carboxyl-terminal mutagenesis of Gt alpha on rhodopsin and guanine nucleotide binding. J Biol Chem. 1995 Dec 29;270(52):31052–31058. doi: 10.1074/jbc.270.52.31052. [DOI] [PubMed] [Google Scholar]
  36. Park D., Jhon D. Y., Lee C. W., Ryu S. H., Rhee S. G. Removal of the carboxyl-terminal region of phospholipase C-beta 1 by calpain abolishes activation by G alpha q. J Biol Chem. 1993 Feb 15;268(5):3710–3714. [PubMed] [Google Scholar]
  37. Posner B. A., Mixon M. B., Wall M. A., Sprang S. R., Gilman A. G. The A326S mutant of Gialpha1 as an approximation of the receptor-bound state. J Biol Chem. 1998 Aug 21;273(34):21752–21758. doi: 10.1074/jbc.273.34.21752. [DOI] [PubMed] [Google Scholar]
  38. Raw A. S., Coleman D. E., Gilman A. G., Sprang S. R. Structural and biochemical characterization of the GTPgammaS-, GDP.Pi-, and GDP-bound forms of a GTPase-deficient Gly42 --> Val mutant of Gialpha1. Biochemistry. 1997 Dec 16;36(50):15660–15669. doi: 10.1021/bi971912p. [DOI] [PubMed] [Google Scholar]
  39. Richardson B. P., Engel G., Donatsch P., Stadler P. A. Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature. 1985 Jul 11;316(6024):126–131. doi: 10.1038/316126a0. [DOI] [PubMed] [Google Scholar]
  40. Richmond J. E., Davis W. S., Jorgensen E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci. 1999 Nov;2(11):959–964. doi: 10.1038/14755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ruvkun G., Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature. 1989 Mar 23;338(6213):313–319. doi: 10.1038/338313a0. [DOI] [PubMed] [Google Scholar]
  42. Schafer W. R., Sanchez B. M., Kenyon C. J. Genes affecting sensitivity to serotonin in Caenorhabditis elegans. Genetics. 1996 Jul;143(3):1219–1230. doi: 10.1093/genetics/143.3.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Seuwen K., Magnaldo I., Pouysségur J. Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi-protein. Nature. 1988 Sep 15;335(6187):254–256. doi: 10.1038/335254a0. [DOI] [PubMed] [Google Scholar]
  44. Singer Alex U., Waldo Gary L., Harden T. Kendall, Sondek John. A unique fold of phospholipase C-beta mediates dimerization and interaction with G alpha q. Nat Struct Biol. 2002 Jan;9(1):32–36. doi: 10.1038/nsb731. [DOI] [PubMed] [Google Scholar]
  45. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  46. Sze J. Y., Victor M., Loer C., Shi Y., Ruvkun G. Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature. 2000 Feb 3;403(6769):560–564. doi: 10.1038/35000609. [DOI] [PubMed] [Google Scholar]
  47. Tabuse Y., Miwa J. A gene involved in action of tumor promoters is identified and mapped in Caenorhabditis elegans. Carcinogenesis. 1983;4(6):783–786. doi: 10.1093/carcin/4.6.783. [DOI] [PubMed] [Google Scholar]
  48. Tabuse Y., Nishiwaki K., Miwa J. Mutations in a protein kinase C homolog confer phorbol ester resistance on Caenorhabditis elegans. Science. 1989 Mar 31;243(4899):1713–1716. doi: 10.1126/science.2538925. [DOI] [PubMed] [Google Scholar]
  49. Tabuse Y., Sano T., Nishiwaki K., Miwa J. Molecular evidence for the direct involvement of a protein kinase C in developmental and behavioural susceptibility to tumour-promoting phorbol esters in Caenorhabditis elegans. Biochem J. 1995 Nov 15;312(Pt 1):69–74. doi: 10.1042/bj3120069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tesmer J. J., Berman D. M., Gilman A. G., Sprang S. R. Structure of RGS4 bound to AlF4--activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell. 1997 Apr 18;89(2):251–261. doi: 10.1016/s0092-8674(00)80204-4. [DOI] [PubMed] [Google Scholar]
  51. Thomas J. H. Genetic analysis of defecation in Caenorhabditis elegans. Genetics. 1990 Apr;124(4):855–872. doi: 10.1093/genetics/124.4.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thomas T. C., Schmidt C. J., Neer E. J. G-protein alpha o subunit: mutation of conserved cysteines identifies a subunit contact surface and alters GDP affinity. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10295–10299. doi: 10.1073/pnas.90.21.10295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Trent C., Tsuing N., Horvitz H. R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. doi: 10.1093/genetics/104.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Venkatakrishnan G., Exton J. H. Identification of determinants in the alpha-subunit of Gq required for phospholipase C activation. J Biol Chem. 1996 Mar 1;271(9):5066–5072. doi: 10.1074/jbc.271.9.5066. [DOI] [PubMed] [Google Scholar]
  55. Waggoner L. E., Dickinson K. A., Poole D. S., Tabuse Y., Miwa J., Schafer W. R. Long-term nicotine adaptation in Caenorhabditis elegans involves PKC-dependent changes in nicotinic receptor abundance. J Neurosci. 2000 Dec 1;20(23):8802–8811. doi: 10.1523/JNEUROSCI.20-23-08802.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Waggoner L. E., Zhou G. T., Schafer R. W., Schafer W. R. Control of alternative behavioral states by serotonin in Caenorhabditis elegans. Neuron. 1998 Jul;21(1):203–214. doi: 10.1016/s0896-6273(00)80527-9. [DOI] [PubMed] [Google Scholar]
  57. Wall M. A., Coleman D. E., Lee E., Iñiguez-Lluhi J. A., Posner B. A., Gilman A. G., Sprang S. R. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell. 1995 Dec 15;83(6):1047–1058. doi: 10.1016/0092-8674(95)90220-1. [DOI] [PubMed] [Google Scholar]
  58. Wang T., Pentyala S., Elliott J. T., Dowal L., Gupta E., Rebecchi M. J., Scarlata S. Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7843–7846. doi: 10.1073/pnas.96.14.7843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Way J. C., Wang L., Run J. Q., Wang A. The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans. Genes Dev. 1991 Dec;5(12A):2199–2211. doi: 10.1101/gad.5.12a.2199. [DOI] [PubMed] [Google Scholar]
  60. Weinshenker D., Garriga G., Thomas J. H. Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci. 1995 Oct;15(10):6975–6985. doi: 10.1523/JNEUROSCI.15-10-06975.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES