Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):2055–2062. doi: 10.1093/genetics/165.4.2055

Age-associated activation of epigenetically repressed genes in the mouse.

Pamela E Bennett-Baker 1, Jodi Wilkowski 1, David T Burke 1
PMCID: PMC1462878  PMID: 14704185

Abstract

Epigenetic control of gene expression is a consistent feature of differentiated mammalian cell types. Epigenetic expression patterns are mitotically heritable and are stably maintained in adult cells. However, unlike somatic DNA mutation, little is known about the occurrence of epigenetic change, or epimutation, during normal adult life. We have monitored the age-associated maintenance of two epigenetic systems--X inactivation and genomic imprinting--using the genes Atp7a and Igf2, respectively. Quantitative measurements of RNA transcripts from the inactive and active alleles were performed in mice from 2 to 24 months of age. For both genes, older animal cohorts showed reproducible increases in transcripts expressed from the silenced alleles. Loss of X chromosome silencing showed cohort mean increases of up to 2.2%, while imprinted-gene activation increased up to 6.7%. The results support the hypothesis that epigenetic loss of gene repression occurs in normal tissues and may be a contributing factor in progressive physiological dysfunction seen during mammalian aging. Quantitatively, the loss of epigenetic control may be one to two orders of magnitude greater than previously determined somatic DNA mutation.

Full Text

The Full Text of this article is available as a PDF (187.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cattanach B. M. Position effect variegation in the mouse. Genet Res. 1974 Jun;23(3):291–306. doi: 10.1017/s0016672300014932. [DOI] [PubMed] [Google Scholar]
  2. Cui H., Horon I. L., Ohlsson R., Hamilton S. R., Feinberg A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med. 1998 Nov;4(11):1276–1280. doi: 10.1038/3260. [DOI] [PubMed] [Google Scholar]
  3. Eicher E. M. X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Adv Genet. 1970;15:175–259. [PubMed] [Google Scholar]
  4. Fahy E., Nazarbaghi R., Zomorrodi M., Herrnstadt C., Parker W. D., Davis R. E., Ghosh S. S. Multiplex fluorescence-based primer extension method for quantitative mutation analysis of mitochondrial DNA and its diagnostic application for Alzheimer's disease. Nucleic Acids Res. 1997 Aug 1;25(15):3102–3109. doi: 10.1093/nar/25.15.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feinberg A. P. Cancer epigenetics takes center stage. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):392–394. doi: 10.1073/pnas.98.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenwood A. D., Burke D. T. Single nucleotide primer extension: quantitative range, variability, and multiplex analysis. Genome Res. 1996 Apr;6(4):336–348. doi: 10.1101/gr.6.4.336. [DOI] [PubMed] [Google Scholar]
  7. Hecker K. H., Roux K. H. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques. 1996 Mar;20(3):478–485. doi: 10.2144/19962003478. [DOI] [PubMed] [Google Scholar]
  8. Holliday R. Toward a biological understanding of the ageing process. Perspect Biol Med. 1988 Autumn;32(1):109–123. doi: 10.1353/pbm.1988.0023. [DOI] [PubMed] [Google Scholar]
  9. Howard B. H. Replicative senescence: considerations relating to the stability of heterochromatin domains. Exp Gerontol. 1996 Jan-Apr;31(1-2):281–293. doi: 10.1016/0531-5565(95)00022-4. [DOI] [PubMed] [Google Scholar]
  10. Jazwinski S. M. Longevity, genes, and aging. Science. 1996 Jul 5;273(5271):54–59. doi: 10.1126/science.273.5271.54. [DOI] [PubMed] [Google Scholar]
  11. Jenuwein T., Allis C. D. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  12. Jiang S., Hemann M. A., Lee M. P., Feinberg A. P. Strain-dependent developmental relaxation of imprinting of an endogenous mouse gene, Kvlqt1. Genomics. 1998 Nov 1;53(3):395–399. doi: 10.1006/geno.1998.5511. [DOI] [PubMed] [Google Scholar]
  13. Johnson F. B., Sinclair D. A., Guarente L. Molecular biology of aging. Cell. 1999 Jan 22;96(2):291–302. doi: 10.1016/s0092-8674(00)80567-x. [DOI] [PubMed] [Google Scholar]
  14. Jones P. A., Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001 Aug 10;293(5532):1068–1070. doi: 10.1126/science.1063852. [DOI] [PubMed] [Google Scholar]
  15. King C. M., Gillespie E. S., McKenna P. G., Barnett Y. A. An investigation of mutation as a function of age in humans. Mutat Res. 1994 Aug;316(2):79–90. doi: 10.1016/0921-8734(94)90010-8. [DOI] [PubMed] [Google Scholar]
  16. Latham K. E. Mechanisms and control of embryonic genome activation in mammalian embryos. Int Rev Cytol. 1999;193:71–124. doi: 10.1016/s0074-7696(08)61779-9. [DOI] [PubMed] [Google Scholar]
  17. Lyon M. F. X-chromosome inactivation. Curr Biol. 1999 Apr 8;9(7):R235–R237. doi: 10.1016/s0960-9822(99)80151-1. [DOI] [PubMed] [Google Scholar]
  18. Martus H. J., Dollé M. E., Gossen J. A., Boerrigter M. E., Vijg J. Use of transgenic mouse models for studying somatic mutations in aging. Mutat Res. 1995 Oct;338(1-6):203–213. doi: 10.1016/0921-8734(95)00025-2. [DOI] [PubMed] [Google Scholar]
  19. McAdams H. H., Arkin A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet. 1999 Feb;15(2):65–69. doi: 10.1016/s0168-9525(98)01659-x. [DOI] [PubMed] [Google Scholar]
  20. Singer-Sam J., LeBon J. M., Dai A., Riggs A. D. A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Methods Appl. 1992 Feb;1(3):160–163. doi: 10.1101/gr.1.3.160. [DOI] [PubMed] [Google Scholar]
  21. Wareham K. A., Lyon M. F., Glenister P. H., Williams E. D. Age related reactivation of an X-linked gene. 1987 Jun 25-Jul 1Nature. 327(6124):725–727. doi: 10.1038/327725a0. [DOI] [PubMed] [Google Scholar]
  22. Weiler K. S., Wakimoto B. T. Heterochromatin and gene expression in Drosophila. Annu Rev Genet. 1995;29:577–605. doi: 10.1146/annurev.ge.29.120195.003045. [DOI] [PubMed] [Google Scholar]
  23. Zhen L., Swank R. T. A simple and high yield method for recovering DNA from agarose gels. Biotechniques. 1993 Jun;14(6):894–898. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES