Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):2117–2128. doi: 10.1093/genetics/165.4.2117

Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites.

Kejun Liu 1, Major Goodman 1, Spencer Muse 1, J Stephen Smith 1, Ed Buckler 1, John Doebley 1
PMCID: PMC1462894  PMID: 14704191

Abstract

Two hundred and sixty maize inbred lines, representative of the genetic diversity among essentially all public lines of importance to temperate breeding and many important tropical and subtropical lines, were assayed for polymorphism at 94 microsatellite loci. The 2039 alleles identified served as raw data for estimating genetic structure and diversity. A model-based clustering analysis placed the inbred lines in five clusters that correspond to major breeding groups plus a set of lines showing evidence of mixed origins. A "phylogenetic" tree was constructed to further assess the genetic structure of maize inbreds, showing good agreement with the pedigree information and the cluster analysis. Tropical and subtropical inbreds possess a greater number of alleles and greater gene diversity than their temperate counterparts. The temperate Stiff Stalk lines are on average the most divergent from all other inbred groups. Comparison of diversity in equivalent samples of inbreds and open-pollinated landraces revealed that maize inbreds capture <80% of the alleles in the landraces, suggesting that landraces can provide additional genetic diversity for maize breeding. The contributions of four different segments of the landrace gene pool to each inbred group's gene pool were estimated using a novel likelihood-based model. The estimates are largely consistent with known histories of the inbreds and indicate that tropical highland germplasm is poorly represented in maize inbreds. Core sets of inbreds that capture maximal allelic richness were defined. These or similar core sets can be used for a variety of genetic applications in maize.

Full Text

The Full Text of this article is available as a PDF (312.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry Donald A., Seltzer Jon D., Xie Chongqing, Wright Deanne L., Smith J. Stephen C. Assessing probability of ancestry using simple sequence repeat profiles: applications to maize hybrids and inbreds. Genetics. 2002 Jun;161(2):813–824. doi: 10.1093/genetics/161.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chin E. C., Senior M. L., Shu H., Smith J. S. Maize simple repetitive DNA sequences: abundance and allele variation. Genome. 1996 Oct;39(5):866–873. doi: 10.1139/g96-109. [DOI] [PubMed] [Google Scholar]
  4. Dale Philip J., Clarke Belinda, Fontes Eliana M. G. Potential for the environmental impact of transgenic crops. Nat Biotechnol. 2002 Jun;20(6):567–574. doi: 10.1038/nbt0602-567. [DOI] [PubMed] [Google Scholar]
  5. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fowler J. E., Freeling M. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Genet. 1996;18(3):198–222. doi: 10.1002/(SICI)1520-6408(1996)18:3<198::AID-DVG2>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  7. Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6723–6727. doi: 10.1073/pnas.92.15.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henry A. M., Damerval C. High rates of polymorphism and recombination at the Opaque-2 locus in cultivated maize. Mol Gen Genet. 1997 Sep;256(2):147–157. doi: 10.1007/s004380050556. [DOI] [PubMed] [Google Scholar]
  9. Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
  10. Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967 Feb;27(2):209–220. [PubMed] [Google Scholar]
  11. Matsuoka Y., Mitchell S. E., Kresovich S., Goodman M., Doebley J. Microsatellites in Zea - variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet. 2002 Feb;104(2-3):436–450. doi: 10.1007/s001220100694. [DOI] [PubMed] [Google Scholar]
  12. Matsuoka Yoshihiro, Vigouroux Yves, Goodman Major M., Sanchez G Jesus, Buckler Edward, Doebley John. A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6080–6084. doi: 10.1073/pnas.052125199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Poethig R. S. Heterochronic mutations affecting shoot development in maize. Genetics. 1988 Aug;119(4):959–973. doi: 10.1093/genetics/119.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pritchard J. K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000 Jun;155(2):945–959. doi: 10.1093/genetics/155.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Remington D. L., Thornsberry J. M., Matsuoka Y., Wilson L. M., Whitt S. R., Doebley J., Kresovich S., Goodman M. M., Buckler E. S., 4th Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A. 2001 Sep 18;98(20):11479–11484. doi: 10.1073/pnas.201394398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Senior M. L., Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome. 1993 Oct;36(5):884–889. doi: 10.1139/g93-116. [DOI] [PubMed] [Google Scholar]
  17. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taramino G., Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome. 1996 Apr;39(2):277–287. doi: 10.1139/g96-038. [DOI] [PubMed] [Google Scholar]
  19. Tenaillon M. I., Sawkins M. C., Long A. D., Gaut R. L., Doebley J. F., Gaut B. S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A. 2001 Jul 24;98(16):9161–9166. doi: 10.1073/pnas.151244298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thornsberry J. M., Goodman M. M., Doebley J., Kresovich S., Nielsen D., Buckler E. S., 4th Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet. 2001 Jul;28(3):286–289. doi: 10.1038/90135. [DOI] [PubMed] [Google Scholar]
  21. Vigouroux Yves, Jaqueth Jennifer S., Matsuoka Yoshihiro, Smith Oscar S., Beavis William D., Smith J. Stephen C., Doebley John. Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol. 2002 Aug;19(8):1251–1260. doi: 10.1093/oxfordjournals.molbev.a004186. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES