Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):1703–1715. doi: 10.1093/genetics/165.4.1703

The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae.

Mariko Tsukamoto 1, Kentaro Yamashita 1, Toshiko Miyazaki 1, Miki Shinohara 1, Akira Shinohara 1
PMCID: PMC1462901  PMID: 14704160

Abstract

In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination between inverted repeats. We also analyzed the effect of the rad52-329 mutant on telomere recombination. Yeast cells lacking telomerase maintain telomere length by recombination. The rad52-329 mutant is deficient in RAD51-dependent telomere recombination, but is proficient in RAD51-independent telomere recombination. In addition, we examined the roles of other recombination genes in the telomere recombination. The RAD51-independent recombination in the rad52-329 mutant is promoted by a paralogue of Rad52, Rad59. All components of the Rad50-Mre11-Xrs2 complex are also important, but not essential, for RAD51-independent telomere recombination. Interestingly, RAD51 inhibits the RAD51-independent, RAD52-dependent telomere recombination. These findings indicate that Rad52 itself, and more precisely its N-terminal DNA-binding domain, promote an essential reaction in recombination in the absence of RAD51.

Full Text

The Full Text of this article is available as a PDF (402.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adzuma K., Ogawa T., Ogawa H. Primary structure of the RAD52 gene in Saccharomyces cerevisiae. Mol Cell Biol. 1984 Dec;4(12):2735–2744. doi: 10.1128/mcb.4.12.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. doi: 10.1534/genetics.112.541.test. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alani E., Subbiah S., Kleckner N. The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics. 1989 May;122(1):47–57. doi: 10.1093/genetics/122.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Asleson E. N., Okagaki R. J., Livingston D. M. A core activity associated with the N terminus of the yeast RAD52 protein is revealed by RAD51 overexpression suppression of C-terminal rad52 truncation alleles. Genetics. 1999 Oct;153(2):681–692. doi: 10.1093/genetics/153.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bai Y., Davis A. P., Symington L. S. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics. 1999 Nov;153(3):1117–1130. doi: 10.1093/genetics/153.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bai Y., Symington L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996 Aug 15;10(16):2025–2037. doi: 10.1101/gad.10.16.2025. [DOI] [PubMed] [Google Scholar]
  7. Boulton S. J., Jackson S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 1998 Mar 16;17(6):1819–1828. doi: 10.1093/emboj/17.6.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boundy-Mills K. L., Livingston D. M. A Saccharomyces cerevisiae RAD52 allele expressing a C-terminal truncation protein: activities and intragenic complementation of missense mutations. Genetics. 1993 Jan;133(1):39–49. doi: 10.1093/genetics/133.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bucholc M., Park Y., Lustig A. J. Intrachromatid excision of telomeric DNA as a mechanism for telomere size control in Saccharomyces cerevisiae. Mol Cell Biol. 2001 Oct;21(19):6559–6573. doi: 10.1128/MCB.21.19.6559-6573.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen Q., Ijpma A., Greider C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol. 2001 Mar;21(5):1819–1827. doi: 10.1128/MCB.21.5.1819-1827.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cohen H., Sinclair D. A. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc Natl Acad Sci U S A. 2001 Mar 6;98(6):3174–3179. doi: 10.1073/pnas.061579598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davis A. P., Symington L. S. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics. 2001 Oct;159(2):515–525. doi: 10.1093/genetics/159.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  14. Grandin Nathalie, Charbonneau Michel. The Rad51 pathway of telomerase-independent maintenance of telomeres can amplify TG1-3 sequences in yku and cdc13 mutants of Saccharomyces cerevisiae. Mol Cell Biol. 2003 Jun;23(11):3721–3734. doi: 10.1128/MCB.23.11.3721-3734.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang P., Pryde F. E., Lester D., Maddison R. L., Borts R. H., Hickson I. D., Louis E. J. SGS1 is required for telomere elongation in the absence of telomerase. Curr Biol. 2001 Jan 23;11(2):125–129. doi: 10.1016/s0960-9822(01)00021-5. [DOI] [PubMed] [Google Scholar]
  16. Ira Grzegorz, Haber James E. Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol. 2002 Sep;22(18):6384–6392. doi: 10.1128/MCB.22.18.6384-6392.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson F. B., Marciniak R. A., McVey M., Stewart S. A., Hahn W. C., Guarente L. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 2001 Feb 15;20(4):905–913. doi: 10.1093/emboj/20.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johzuka K., Ogawa H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics. 1995 Apr;139(4):1521–1532. doi: 10.1093/genetics/139.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kagawa W., Kurumizaka H., Ikawa S., Yokoyama S., Shibata T. Homologous pairing promoted by the human Rad52 protein. J Biol Chem. 2001 Jul 13;276(37):35201–35208. doi: 10.1074/jbc.M104938200. [DOI] [PubMed] [Google Scholar]
  20. Kagawa Wataru, Kurumizaka Hitoshi, Ishitani Ryuichiro, Fukai Shuya, Nureki Osamu, Shibata Takehiko, Yokoyama Shigeyuki. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol Cell. 2002 Aug;10(2):359–371. doi: 10.1016/s1097-2765(02)00587-7. [DOI] [PubMed] [Google Scholar]
  21. Kang L. E., Symington L. S. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae. Mol Cell Biol. 2000 Dec;20(24):9162–9172. doi: 10.1128/mcb.20.24.9162-9172.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kass-Eisler A., Greider C. W. Recombination in telomere-length maintenance. Trends Biochem Sci. 2000 Apr;25(4):200–204. doi: 10.1016/s0968-0004(00)01557-7. [DOI] [PubMed] [Google Scholar]
  23. Le S., Moore J. K., Haber J. E., Greider C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics. 1999 May;152(1):143–152. doi: 10.1093/genetics/152.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lundblad V., Blackburn E. H. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell. 1993 Apr 23;73(2):347–360. doi: 10.1016/0092-8674(93)90234-h. [DOI] [PubMed] [Google Scholar]
  25. Löpez C. C., Nielsen L., Edström J. E. Terminal long tandem repeats in chromosomes form Chironomus pallidivittatus. Mol Cell Biol. 1996 Jul;16(7):3285–3290. doi: 10.1128/mcb.16.7.3285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malkova A., Ivanov E. L., Haber J. E. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7131–7136. doi: 10.1073/pnas.93.14.7131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Malkova A., Signon L., Schaefer C. B., Naylor M. L., Theis J. F., Newlon C. S., Haber J. E. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site. Genes Dev. 2001 May 1;15(9):1055–1060. doi: 10.1101/gad.875901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McEachern M. J., Krauskopf A., Blackburn E. H. Telomeres and their control. Annu Rev Genet. 2000;34:331–358. doi: 10.1146/annurev.genet.34.1.331. [DOI] [PubMed] [Google Scholar]
  29. Milne G. T., Weaver D. T. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 1993 Sep;7(9):1755–1765. doi: 10.1101/gad.7.9.1755. [DOI] [PubMed] [Google Scholar]
  30. Morrow D. M., Connelly C., Hieter P. "Break copy" duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):371–382. doi: 10.1093/genetics/147.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mortensen U. H., Bendixen C., Sunjevaric I., Rothstein R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10729–10734. doi: 10.1073/pnas.93.20.10729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Muris D. F., Bezzubova O., Buerstedde J. M., Vreeken K., Balajee A. S., Osgood C. J., Troelstra C., Hoeijmakers J. H., Ostermann K., Schmidt H. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination. Mutat Res. 1994 Nov;315(3):295–305. doi: 10.1016/0921-8777(94)90040-x. [DOI] [PubMed] [Google Scholar]
  33. Natarajan Shobhana, McEachern Michael J. Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol. 2002 Jul;22(13):4512–4521. doi: 10.1128/MCB.22.13.4512-4521.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. New J. H., Sugiyama T., Zaitseva E., Kowalczykowski S. C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature. 1998 Jan 22;391(6665):407–410. doi: 10.1038/34950. [DOI] [PubMed] [Google Scholar]
  35. Parsons C. A., Baumann P., Van Dyck E., West S. C. Precise binding of single-stranded DNA termini by human RAD52 protein. EMBO J. 2000 Aug 1;19(15):4175–4181. doi: 10.1093/emboj/19.15.4175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reid Robert J. D., Lisby Michael, Rothstein Rodney. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 2002;350:258–277. doi: 10.1016/s0076-6879(02)50968-x. [DOI] [PubMed] [Google Scholar]
  37. Rizki A., Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature. 2001 Jun 7;411(6838):713–716. doi: 10.1038/35079641. [DOI] [PubMed] [Google Scholar]
  38. Shampay J., Szostak J. W., Blackburn E. H. DNA sequences of telomeres maintained in yeast. Nature. 1984 Jul 12;310(5973):154–157. doi: 10.1038/310154a0. [DOI] [PubMed] [Google Scholar]
  39. Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457–470. doi: 10.1016/0092-8674(92)90447-k. [DOI] [PubMed] [Google Scholar]
  40. Shinohara A., Ogawa T. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature. 1998 Jan 22;391(6665):404–407. doi: 10.1038/34943. [DOI] [PubMed] [Google Scholar]
  41. Shinohara A., Shinohara M., Ohta T., Matsuda S., Ogawa T. Rad52 forms ring structures and co-operates with RPA in single-strand DNA annealing. Genes Cells. 1998 Mar;3(3):145–156. doi: 10.1046/j.1365-2443.1998.00176.x. [DOI] [PubMed] [Google Scholar]
  42. Signon L., Malkova A., Naylor M. L., Klein H., Haber J. E. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol Cell Biol. 2001 Mar;21(6):2048–2056. doi: 10.1128/MCB.21.6.2048-2056.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Singer M. S., Gottschling D. E. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science. 1994 Oct 21;266(5184):404–409. doi: 10.1126/science.7545955. [DOI] [PubMed] [Google Scholar]
  44. Singleton Martin R., Wentzell Lois M., Liu Yilun, West Stephen C., Wigley Dale B. Structure of the single-strand annealing domain of human RAD52 protein. Proc Natl Acad Sci U S A. 2002 Oct 7;99(21):13492–13497. doi: 10.1073/pnas.212449899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stasiak A. Z., Larquet E., Stasiak A., Müller S., Engel A., Van Dyck E., West S. C., Egelman E. H. The human Rad52 protein exists as a heptameric ring. Curr Biol. 2000 Mar 23;10(6):337–340. doi: 10.1016/s0960-9822(00)00385-7. [DOI] [PubMed] [Google Scholar]
  46. Sugiyama T., New J. H., Kowalczykowski S. C. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6049–6054. doi: 10.1073/pnas.95.11.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Symington Lorraine S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev. 2002 Dec;66(4):630-70, table of contents. doi: 10.1128/MMBR.66.4.630-670.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Teng S. C., Chang J., McCowan B., Zakian V. A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol Cell. 2000 Oct;6(4):947–952. doi: 10.1016/s1097-2765(05)00094-8. [DOI] [PubMed] [Google Scholar]
  49. Teng S. C., Zakian V. A. Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):8083–8093. doi: 10.1128/mcb.19.12.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tsai Yun-Luen, Tseng Shun-Fu, Chang Shih-Husan, Lin Chuan-Chuan, Teng Shu-Chun. Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol. 2002 Aug;22(16):5679–5687. doi: 10.1128/MCB.22.16.5679-5687.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Usui T., Ohta T., Oshiumi H., Tomizawa J., Ogawa H., Ogawa T. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell. 1998 Nov 25;95(5):705–716. doi: 10.1016/s0092-8674(00)81640-2. [DOI] [PubMed] [Google Scholar]
  52. Van Dyck E., Hajibagheri N. M., Stasiak A., West S. C. Visualisation of human rad52 protein and its complexes with hRad51 and DNA. J Mol Biol. 1998 Dec 11;284(4):1027–1038. doi: 10.1006/jmbi.1998.2203. [DOI] [PubMed] [Google Scholar]
  53. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES