Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):1687–1702. doi: 10.1093/genetics/165.4.1687

The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae.

Xiaoyun Wu 1, Anne Rossettini 1, Steven D Hanes 1
PMCID: PMC1462908  PMID: 14704159

Abstract

Transcription by RNA polymerase II (pol II) requires the ordered binding of distinct protein complexes to catalyze initiation, elongation, termination, and coupled mRNA processing events. One or more proteins from each complex are known to bind pol II via the carboxy-terminal domain (CTD) of the largest subunit, Rpb1. How binding is coordinated is not known, but it might involve conformational changes in the CTD induced by the Ess1 peptidyl-prolyl cis/trans isomerase. Here, we examined the role of ESS1 in transcription by studying one of its multicopy suppressors, BYE1. We found that Bye1 is a negative regulator of transcription elongation. This led to the finding that Ess1 also inhibits elongation; Ess1 opposes elongation factors Dst1 and Spt4/5, and overexpression of ESS1 makes cells more sensitive to the elongation inhibitor 6-AU. In reporter gene assays, ess1 mutations reduce the ability of elongation-arrest sites to stall polymerase. We also show that Ess1 acts positively in transcription termination, independent of its role in elongation. We propose that Ess1-induced conformational changes attenuate pol II elongation and help coordinate the ordered assembly of protein complexes on the CTD. In this way, Ess1 might regulate the transition between multiple steps of transcription.

Full Text

The Full Text of this article is available as a PDF (637.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasland R., Gibson T. J., Stewart A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci. 1995 Feb;20(2):56–59. doi: 10.1016/s0968-0004(00)88957-4. [DOI] [PubMed] [Google Scholar]
  2. Alén Claudia, Kent Nicholas A., Jones Hannah S., O'Sullivan Justin, Aranda Agustín, Proudfoot Nicholas J. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol Cell. 2002 Dec;10(6):1441–1452. doi: 10.1016/s1097-2765(02)00778-5. [DOI] [PubMed] [Google Scholar]
  3. Archambault J., Chambers R. S., Kobor M. S., Ho Y., Cartier M., Bolotin D., Andrews B., Kane C. M., Greenblatt J. An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14300–14305. doi: 10.1073/pnas.94.26.14300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Archambault J., Lacroute F., Ruet A., Friesen J. D. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol Cell Biol. 1992 Sep;12(9):4142–4152. doi: 10.1128/mcb.12.9.4142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arévalo-Rodríguez M., Cardenas M. E., Wu X., Hanes S. D., Heitman J. Cyclophilin A and Ess1 interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J. 2000 Jul 17;19(14):3739–3749. doi: 10.1093/emboj/19.14.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Awrey D. E., Shimasaki N., Koth C., Weilbaecher R., Olmsted V., Kazanis S., Shan X., Arellano J., Arrowsmith C. H., Kane C. M. Yeast transcript elongation factor (TFIIS), structure and function. II: RNA polymerase binding, transcript cleavage, and read-through. J Biol Chem. 1998 Aug 28;273(35):22595–22605. doi: 10.1074/jbc.273.35.22595. [DOI] [PubMed] [Google Scholar]
  7. Barillà D., Lee B. A., Proudfoot N. J. Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2001 Jan 9;98(2):445–450. doi: 10.1073/pnas.98.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carlson M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu Rev Cell Dev Biol. 1997;13:1–23. doi: 10.1146/annurev.cellbio.13.1.1. [DOI] [PubMed] [Google Scholar]
  9. Christianson T. W., Sikorski R. S., Dante M., Shero J. H., Hieter P. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992 Jan 2;110(1):119–122. doi: 10.1016/0378-1119(92)90454-w. [DOI] [PubMed] [Google Scholar]
  10. Christie K. R., Awrey D. E., Edwards A. M., Kane C. M. Purified yeast RNA polymerase II reads through intrinsic blocks to elongation in response to the yeast TFIIS analogue, P37. J Biol Chem. 1994 Jan 14;269(2):936–943. [PubMed] [Google Scholar]
  11. Corden J. L., Cadena D. L., Ahearn J. M., Jr, Dahmus M. E. A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7934–7938. doi: 10.1073/pnas.82.23.7934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crenshaw D. G., Yang J., Means A. R., Kornbluth S. The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1. EMBO J. 1998 Aug 10;17(5):1315–1327. doi: 10.1093/emboj/17.5.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Devasahayam Gina, Chaturvedi Vishnu, Hanes Steven D. The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans. Genetics. 2002 Jan;160(1):37–48. doi: 10.1093/genetics/160.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dichtl Bernhard, Blank Diana, Ohnacker Martin, Friedlein Arno, Roeder Daniel, Langen Hanno, Keller Walter. A role for SSU72 in balancing RNA polymerase II transcription elongation and termination. Mol Cell. 2002 Nov;10(5):1139–1150. doi: 10.1016/s1097-2765(02)00707-4. [DOI] [PubMed] [Google Scholar]
  15. Dichtl Bernhard, Blank Diana, Sadowski Martin, Hübner Wolfgang, Weiser Stefan, Keller Walter. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J. 2002 Aug 1;21(15):4125–4135. doi: 10.1093/emboj/cdf390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
  17. Exinger F., Lacroute F. 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr Genet. 1992 Jul;22(1):9–11. doi: 10.1007/BF00351735. [DOI] [PubMed] [Google Scholar]
  18. Fischer G., Tradler T., Zarnt T. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett. 1998 Apr 10;426(1):17–20. doi: 10.1016/s0014-5793(98)00242-7. [DOI] [PubMed] [Google Scholar]
  19. Fujimori F., Takahashi K., Uchida C., Uchida T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G(0) arrest. Biochem Biophys Res Commun. 1999 Nov 30;265(3):658–663. doi: 10.1006/bbrc.1999.1736. [DOI] [PubMed] [Google Scholar]
  20. Hanes S. D., Brent R. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell. 1989 Jun 30;57(7):1275–1283. doi: 10.1016/0092-8674(89)90063-9. [DOI] [PubMed] [Google Scholar]
  21. Hani J., Schelbert B., Bernhardt A., Domdey H., Fischer G., Wiebauer K., Rahfeld J. U. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem. 1999 Jan 1;274(1):108–116. doi: 10.1074/jbc.274.1.108. [DOI] [PubMed] [Google Scholar]
  22. Hani J., Stumpf G., Domdey H. PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of PPIases. FEBS Lett. 1995 May 29;365(2-3):198–202. doi: 10.1016/0014-5793(95)00471-k. [DOI] [PubMed] [Google Scholar]
  23. Hartzog G. A., Wada T., Handa H., Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 1998 Feb 1;12(3):357–369. doi: 10.1101/gad.12.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hartzog Grant A., Speer Jennifer L., Lindstrom Derek L. Transcript elongation on a nucleoprotein template. Biochim Biophys Acta. 2002 Sep 13;1577(2):276–286. doi: 10.1016/s0167-4781(02)00458-x. [DOI] [PubMed] [Google Scholar]
  25. Hirose Y., Manley J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 2000 Jun 15;14(12):1415–1429. [PubMed] [Google Scholar]
  26. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528–535. [PubMed] [Google Scholar]
  27. Howe Kenneth James. RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta. 2002 Sep 13;1577(2):308–324. doi: 10.1016/s0167-4781(02)00460-8. [DOI] [PubMed] [Google Scholar]
  28. Hsu T., McRackan D., Vincent T. S., Gert de Couet H. Drosophila Pin1 prolyl isomerase Dodo is a MAP kinase signal responder during oogenesis. Nat Cell Biol. 2001 Jun;3(6):538–543. doi: 10.1038/35078508. [DOI] [PubMed] [Google Scholar]
  29. Huang H. K., Forsburg S. L., John U. P., O'Connell M. J., Hunter T. Isolation and characterization of the Pin1/Ess1p homologue in Schizosaccharomyces pombe. J Cell Sci. 2001 Oct;114(Pt 20):3779–3788. doi: 10.1242/jcs.114.20.3779. [DOI] [PubMed] [Google Scholar]
  30. Hyman L. E., Seiler S. H., Whoriskey J., Moore C. L. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3'-end formation. Mol Cell Biol. 1991 Apr;11(4):2004–2012. doi: 10.1128/mcb.11.4.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kobor M. S., Archambault J., Lester W., Holstege F. C., Gileadi O., Jansma D. B., Jennings E. G., Kouyoumdjian F., Davidson A. R., Young R. A. An unusual eukaryotic protein phosphatase required for transcription by RNA polymerase II and CTD dephosphorylation in S. cerevisiae. Mol Cell. 1999 Jul;4(1):55–62. doi: 10.1016/s1097-2765(00)80187-2. [DOI] [PubMed] [Google Scholar]
  32. Komarnitsky P., Cho E. J., Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 2000 Oct 1;14(19):2452–2460. doi: 10.1101/gad.824700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Krogan Nevan J., Kim Minkyu, Ahn Seong Hoon, Zhong Guoqing, Kobor Michael S., Cagney Gerard, Emili Andrew, Shilatifard Ali, Buratowski Stephen, Greenblatt Jack F. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol. 2002 Oct;22(20):6979–6992. doi: 10.1128/MCB.22.20.6979-6992.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kumar A., Cheung K. H., Ross-Macdonald P., Coelho P. S., Miller P., Snyder M. TRIPLES: a database of gene function in Saccharomyces cerevisiae. Nucleic Acids Res. 2000 Jan 1;28(1):81–84. doi: 10.1093/nar/28.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lavoie S. B., Albert A. L., Handa H., Vincent M., Bensaude O. The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9. J Mol Biol. 2001 Sep 28;312(4):675–685. doi: 10.1006/jmbi.2001.4991. [DOI] [PubMed] [Google Scholar]
  36. Licatalosi Donny D., Geiger Gabrielle, Minet Michelle, Schroeder Stephanie, Cilli Kate, McNeil J. Bryan, Bentley David L. Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II. Mol Cell. 2002 May;9(5):1101–1111. doi: 10.1016/s1097-2765(02)00518-x. [DOI] [PubMed] [Google Scholar]
  37. Lindstrom D. L., Squazzo S. L., Muster N., Burckin T. A., Wachter K. C., Emigh C. A., McCleery J. A., Yates J. R., 3rd, Hartzog G. A. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol. 2003 Feb;23(4):1368–1378. doi: 10.1128/MCB.23.4.1368-1378.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Losson R., Lacroute F. Cloning of a eukaryotic regulatory gene. Mol Gen Genet. 1981;184(3):394–399. doi: 10.1007/BF00352511. [DOI] [PubMed] [Google Scholar]
  39. Lu K. P., Hanes S. D., Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature. 1996 Apr 11;380(6574):544–547. doi: 10.1038/380544a0. [DOI] [PubMed] [Google Scholar]
  40. Maleszka R., Hanes S. D., Hackett R. L., de Couet H. G., Miklos G. L. The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):447–451. doi: 10.1073/pnas.93.1.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McCracken S., Fong N., Rosonina E., Yankulov K., Brothers G., Siderovski D., Hessel A., Foster S., Shuman S., Bentley D. L. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 1997 Dec 15;11(24):3306–3318. doi: 10.1101/gad.11.24.3306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McCracken S., Fong N., Yankulov K., Ballantyne S., Pan G., Greenblatt J., Patterson S. D., Wickens M., Bentley D. L. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature. 1997 Jan 23;385(6614):357–361. doi: 10.1038/385357a0. [DOI] [PubMed] [Google Scholar]
  43. Morris D. P., Greenleaf A. L. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem. 2000 Dec 22;275(51):39935–39943. doi: 10.1074/jbc.M004118200. [DOI] [PubMed] [Google Scholar]
  44. Morris D. P., Phatnani H. P., Greenleaf A. L. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation. J Biol Chem. 1999 Oct 29;274(44):31583–31587. doi: 10.1074/jbc.274.44.31583. [DOI] [PubMed] [Google Scholar]
  45. Patturajan M., Wei X., Berezney R., Corden J. L. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol Cell Biol. 1998 Apr;18(4):2406–2415. doi: 10.1128/mcb.18.4.2406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Payne J. M., Laybourn P. J., Dahmus M. E. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem. 1989 Nov 25;264(33):19621–19629. [PubMed] [Google Scholar]
  47. Ping Y. H., Rana T. M. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem. 2000 Dec 8;276(16):12951–12958. doi: 10.1074/jbc.M006130200. [DOI] [PubMed] [Google Scholar]
  48. Pokholok Dmitry K., Hannett Nancy M., Young Richard A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell. 2002 Apr;9(4):799–809. doi: 10.1016/s1097-2765(02)00502-6. [DOI] [PubMed] [Google Scholar]
  49. Proudfoot Nick J., Furger Andre, Dye Michael J. Integrating mRNA processing with transcription. Cell. 2002 Feb 22;108(4):501–512. doi: 10.1016/s0092-8674(02)00617-7. [DOI] [PubMed] [Google Scholar]
  50. Schroeder S. C., Schwer B., Shuman S., Bentley D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 2000 Oct 1;14(19):2435–2440. doi: 10.1101/gad.836300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shaw Peter E. Peptidyl-prolyl isomerases: a new twist to transcription. EMBO Rep. 2002 Jun;3(6):521–526. doi: 10.1093/embo-reports/kvf118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  53. Wada T., Orphanides G., Hasegawa J., Kim D. K., Shima D., Yamaguchi Y., Fukuda A., Hisatake K., Oh S., Reinberg D. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol Cell. 2000 Jun;5(6):1067–1072. doi: 10.1016/s1097-2765(00)80272-5. [DOI] [PubMed] [Google Scholar]
  54. Wada T., Takagi T., Yamaguchi Y., Ferdous A., Imai T., Hirose S., Sugimoto S., Yano K., Hartzog G. A., Winston F. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 1998 Feb 1;12(3):343–356. doi: 10.1101/gad.12.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. West M. L., Corden J. L. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics. 1995 Aug;140(4):1223–1233. doi: 10.1093/genetics/140.4.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wind M., Reines D. Transcription elongation factor SII. Bioessays. 2000 Apr;22(4):327–336. doi: 10.1002/(SICI)1521-1878(200004)22:4<327::AID-BIES3>3.0.CO;2-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Woodage T., Basrai M. A., Baxevanis A. D., Hieter P., Collins F. S. Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11472–11477. doi: 10.1073/pnas.94.21.11472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wu J., Awrey D. E., Edwards A. M., Archambault J., Friesen J. D. In vitro characterization of mutant yeast RNA polymerase II with reduced binding for elongation factor TFIIS. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11552–11557. doi: 10.1073/pnas.93.21.11552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wu X., Chang A., Sudol M., Hanes S. D. Genetic interactions between the ESS1 prolyl-isomerase and the RSP5 ubiquitin ligase reveal opposing effects on RNA polymerase II function. Curr Genet. 2001 Dec;40(4):234–242. doi: 10.1007/s00294-001-0257-8. [DOI] [PubMed] [Google Scholar]
  60. Wu X., Wilcox C. B., Devasahayam G., Hackett R. L., Arévalo-Rodríguez M., Cardenas M. E., Heitman J., Hanes S. D. The Ess1 prolyl isomerase is linked to chromatin remodeling complexes and the general transcription machinery. EMBO J. 2000 Jul 17;19(14):3727–3738. doi: 10.1093/emboj/19.14.3727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yamaguchi Y., Takagi T., Wada T., Yano K., Furuya A., Sugimoto S., Hasegawa J., Handa H. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell. 1999 Apr 2;97(1):41–51. doi: 10.1016/s0092-8674(00)80713-8. [DOI] [PubMed] [Google Scholar]
  62. Zhu W., Hanes S. D. Identification of drosophila bicoid-interacting proteins using a custom two-hybrid selection. Gene. 2000 Mar 21;245(2):329–339. doi: 10.1016/s0378-1119(00)00048-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES