Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):1993–2006. doi: 10.1093/genetics/165.4.1993

The novel plant homeodomain protein rhinoceros antagonizes Ras signaling in the Drosophila eye.

Matthew G Voas 1, Ilaria Rebay 1
PMCID: PMC1462918  PMID: 14704181

Abstract

The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye.

Full Text

The Full Text of this article is available as a PDF (758.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aasland R., Gibson T. J., Stewart A. F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem Sci. 1995 Feb;20(2):56–59. doi: 10.1016/s0968-0004(00)88957-4. [DOI] [PubMed] [Google Scholar]
  2. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  3. Adryan B., Decker H. J., Papas T. S., Hsu T. Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene. 2000 Jun 1;19(24):2803–2811. doi: 10.1038/sj.onc.1203611. [DOI] [PubMed] [Google Scholar]
  4. Bateman Alex, Birney Ewan, Cerruti Lorenzo, Durbin Richard, Etwiller Laurence, Eddy Sean R., Griffiths-Jones Sam, Howe Kevin L., Marshall Mhairi, Sonnhammer Erik L. L. The Pfam protein families database. Nucleic Acids Res. 2002 Jan 1;30(1):276–280. doi: 10.1093/nar/30.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borden K. L., Freemont P. S. The RING finger domain: a recent example of a sequence-structure family. Curr Opin Struct Biol. 1996 Jun;6(3):395–401. doi: 10.1016/s0959-440x(96)80060-1. [DOI] [PubMed] [Google Scholar]
  6. Brand A. H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993 Jun;118(2):401–415. doi: 10.1242/dev.118.2.401. [DOI] [PubMed] [Google Scholar]
  7. Cadavid A. L., Ginzel A., Fischer J. A. The function of the Drosophila fat facets deubiquitinating enzyme in limiting photoreceptor cell number is intimately associated with endocytosis. Development. 2000 Apr;127(8):1727–1736. doi: 10.1242/dev.127.8.1727. [DOI] [PubMed] [Google Scholar]
  8. Chen Xin, Zhang Bing, Fischer Janice A. A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. Genes Dev. 2002 Feb 1;16(3):289–294. doi: 10.1101/gad.961502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cho K. O., Chern J., Izaddoost S., Choi K. W. Novel signaling from the peripodial membrane is essential for eye disc patterning in Drosophila. Cell. 2000 Oct 13;103(2):331–342. doi: 10.1016/s0092-8674(00)00124-0. [DOI] [PubMed] [Google Scholar]
  10. Conaway Ronald C., Brower Christopher S., Conaway Joan Weliky. Emerging roles of ubiquitin in transcription regulation. Science. 2002 May 17;296(5571):1254–1258. doi: 10.1126/science.1067466. [DOI] [PubMed] [Google Scholar]
  11. Cooper M. T., Bray S. J. R7 photoreceptor specification requires Notch activity. Curr Biol. 2000 Nov 30;10(23):1507–1510. doi: 10.1016/s0960-9822(00)00826-5. [DOI] [PubMed] [Google Scholar]
  12. Coscoy L., Sanchez D. J., Ganem D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol. 2001 Dec 24;155(7):1265–1273. doi: 10.1083/jcb.200111010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coyle-Thompson C. A., Banerjee U. The strawberry notch gene functions with Notch in common developmental pathways. Development. 1993 Oct;119(2):377–395. doi: 10.1242/dev.119.2.377. [DOI] [PubMed] [Google Scholar]
  14. Dong P. D., Chu J., Panganiban G. Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development. 2000 Jan;127(2):209–216. doi: 10.1242/dev.127.2.209. [DOI] [PubMed] [Google Scholar]
  15. Fair K., Anderson M., Bulanova E., Mi H., Tropschug M., Diaz M. O. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol. 2001 May;21(10):3589–3597. doi: 10.1128/MCB.21.10.3589-3597.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fehon R. G., Kooh P. J., Rebay I., Regan C. L., Xu T., Muskavitch M. A., Artavanis-Tsakonas S. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell. 1990 May 4;61(3):523–534. doi: 10.1016/0092-8674(90)90534-l. [DOI] [PubMed] [Google Scholar]
  17. Fischer-Vize J. A., Rubin G. M., Lehmann R. The fat facets gene is required for Drosophila eye and embryo development. Development. 1992 Dec;116(4):985–1000. doi: 10.1242/dev.116.4.985. [DOI] [PubMed] [Google Scholar]
  18. Fischer-Vize J. A., Vize P. D., Rubin G. M. A unique mutation in the Enhancer of split gene complex affects the fates of the mystery cells in the developing Drosophila eye. Development. 1992 May;115(1):89–101. doi: 10.1242/dev.115.1.89. [DOI] [PubMed] [Google Scholar]
  19. Freeman M. Cell determination strategies in the Drosophila eye. Development. 1997 Jan;124(2):261–270. doi: 10.1242/dev.124.2.261. [DOI] [PubMed] [Google Scholar]
  20. Freeman M., Kimmel B. E., Rubin G. M. Identifying targets of the rough homeobox gene of Drosophila: evidence that rhomboid functions in eye development. Development. 1992 Oct;116(2):335–346. doi: 10.1242/dev.116.2.335. [DOI] [PubMed] [Google Scholar]
  21. Freeman M., Klämbt C., Goodman C. S., Rubin G. M. The argos gene encodes a diffusible factor that regulates cell fate decisions in the Drosophila eye. Cell. 1992 Jun 12;69(6):963–975. doi: 10.1016/0092-8674(92)90615-j. [DOI] [PubMed] [Google Scholar]
  22. Freeman M. Misexpression of the Drosophila argos gene, a secreted regulator of cell determination. Development. 1994 Aug;120(8):2297–2304. doi: 10.1242/dev.120.8.2297. [DOI] [PubMed] [Google Scholar]
  23. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. 1996 Nov 15;87(4):651–660. doi: 10.1016/s0092-8674(00)81385-9. [DOI] [PubMed] [Google Scholar]
  24. Freeman M. The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech Dev. 1994 Oct;48(1):25–33. doi: 10.1016/0925-4773(94)90003-5. [DOI] [PubMed] [Google Scholar]
  25. Galindo M. I., Bishop S. A., Greig S., Couso J. P. Leg patterning driven by proximal-distal interactions and EGFR signaling. Science. 2002 Jul 12;297(5579):256–259. doi: 10.1126/science.1072311. [DOI] [PubMed] [Google Scholar]
  26. Gaul U., Mardon G., Rubin G. M. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell. 1992 Mar 20;68(6):1007–1019. doi: 10.1016/0092-8674(92)90073-l. [DOI] [PubMed] [Google Scholar]
  27. Gibson M. C., Schubiger G. Peripodial cells regulate proliferation and patterning of Drosophila imaginal discs. Cell. 2000 Oct 13;103(2):343–350. doi: 10.1016/s0092-8674(00)00125-2. [DOI] [PubMed] [Google Scholar]
  28. Golembo M., Schweitzer R., Freeman M., Shilo B. Z. Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop. Development. 1996 Jan;122(1):223–230. doi: 10.1242/dev.122.1.223. [DOI] [PubMed] [Google Scholar]
  29. Holt Robert A., Subramanian G. Mani, Halpern Aaron, Sutton Granger G., Charlab Rosane, Nusskern Deborah R., Wincker Patrick, Clark Andrew G., Ribeiro José M. C., Wides Ron. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129–149. doi: 10.1126/science.1076181. [DOI] [PubMed] [Google Scholar]
  30. Isshiki T., Pearson B., Holbrook S., Doe C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell. 2001 Aug 24;106(4):511–521. doi: 10.1016/s0092-8674(01)00465-2. [DOI] [PubMed] [Google Scholar]
  31. Jin M. H., Sawamoto K., Ito M., Okano H. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor. Mol Cell Biol. 2000 Mar;20(6):2098–2107. doi: 10.1128/mcb.20.6.2098-2107.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Joazeiro C. A., Weissman A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell. 2000 Sep 1;102(5):549–552. doi: 10.1016/s0092-8674(00)00077-5. [DOI] [PubMed] [Google Scholar]
  33. Lai Z. C., Harrison S. D., Karim F., Li Y., Rubin G. M. Loss of tramtrack gene activity results in ectopic R7 cell formation, even in a sina mutant background. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5025–5030. doi: 10.1073/pnas.93.10.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lee J. R., Urban S., Garvey C. F., Freeman M. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell. 2001 Oct 19;107(2):161–171. doi: 10.1016/s0092-8674(01)00526-8. [DOI] [PubMed] [Google Scholar]
  35. Lisztwan J., Imbert G., Wirbelauer C., Gstaiger M., Krek W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 1999 Jul 15;13(14):1822–1833. doi: 10.1101/gad.13.14.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lorenzo Mayra E., Jung Jae U., Ploegh Hidde L. Kaposi's sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J Virol. 2002 Jun;76(11):5522–5531. doi: 10.1128/JVI.76.11.5522-5531.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lu Zhimin, Xu Shuichan, Joazeiro Claudio, Cobb Melanie H., Hunter Tony. The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell. 2002 May;9(5):945–956. doi: 10.1016/s1097-2765(02)00519-1. [DOI] [PubMed] [Google Scholar]
  38. Miller D. T., Cagan R. L. Local induction of patterning and programmed cell death in the developing Drosophila retina. Development. 1998 Jun;125(12):2327–2335. doi: 10.1242/dev.125.12.2327. [DOI] [PubMed] [Google Scholar]
  39. Mulder Nicola J., Apweiler Rolf, Attwood Teresa K., Bairoch Amos, Barrell Daniel, Bateman Alex, Binns David, Biswas Margaret, Bradley Paul, Bork Peer. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 2003 Jan 1;31(1):315–318. doi: 10.1093/nar/gkg046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. O'Connell S., Wang L., Robert S., Jones C. A., Saint R., Jones R. S. Polycomblike PHD fingers mediate conserved interaction with enhancer of zeste protein. J Biol Chem. 2001 Sep 24;276(46):43065–43073. doi: 10.1074/jbc.M104294200. [DOI] [PubMed] [Google Scholar]
  41. Pascual J., Martinez-Yamout M., Dyson H. J., Wright P. E. Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. J Mol Biol. 2000 Dec 15;304(5):723–729. doi: 10.1006/jmbi.2000.4308. [DOI] [PubMed] [Google Scholar]
  42. Pignoni F., Zipursky S. L. Induction of Drosophila eye development by decapentaplegic. Development. 1997 Jan;124(2):271–278. doi: 10.1242/dev.124.2.271. [DOI] [PubMed] [Google Scholar]
  43. Rebay I., Chen F., Hsiao F., Kolodziej P. A., Kuang B. H., Laverty T., Suh C., Voas M., Williams A., Rubin G. M. A genetic screen for novel components of the Ras/Mitogen-activated protein kinase signaling pathway that interact with the yan gene of Drosophila identifies split ends, a new RNA recognition motif-containing protein. Genetics. 2000 Feb;154(2):695–712. doi: 10.1093/genetics/154.2.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rebay Ilaria. Keeping the receptor tyrosine kinase signaling pathway in check: lessons from Drosophila. Dev Biol. 2002 Nov 1;251(1):1–17. doi: 10.1006/dbio.2002.0806. [DOI] [PubMed] [Google Scholar]
  45. Saha V., Chaplin T., Gregorini A., Ayton P., Young B. D. The leukemia-associated-protein (LAP) domain, a cysteine-rich motif, is present in a wide range of proteins, including MLL, AF10, and MLLT6 proteins. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9737–9741. doi: 10.1073/pnas.92.21.9737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schweitzer R., Howes R., Smith R., Shilo B. Z., Freeman M. Inhibition of Drosophila EGF receptor activation by the secreted protein Argos. Nature. 1995 Aug 24;376(6542):699–702. doi: 10.1038/376699a0. [DOI] [PubMed] [Google Scholar]
  47. Spencer S. A., Powell P. A., Miller D. T., Cagan R. L. Regulation of EGF receptor signaling establishes pattern across the developing Drosophila retina. Development. 1998 Dec;125(23):4777–4790. doi: 10.1242/dev.125.23.4777. [DOI] [PubMed] [Google Scholar]
  48. Tio M., Ma C., Moses K. spitz, a Drosophila homolog of transforming growth factor-alpha, is required in the founding photoreceptor cells of the compound eye facets. Mech Dev. 1994 Oct;48(1):13–23. doi: 10.1016/0925-4773(94)90002-7. [DOI] [PubMed] [Google Scholar]
  49. Tio M., Moses K. The Drosophila TGF alpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development. 1997 Jan;124(2):343–351. doi: 10.1242/dev.124.2.343. [DOI] [PubMed] [Google Scholar]
  50. Tomlinson A., Struhl G. Delta/Notch and Boss/Sevenless signals act combinatorially to specify the Drosophila R7 photoreceptor. Mol Cell. 2001 Mar;7(3):487–495. doi: 10.1016/s1097-2765(01)00196-4. [DOI] [PubMed] [Google Scholar]
  51. Tsuda Leo, Nagaraj Raghavendra, Zipursky S. Lawrence, Banerjee Utpal. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell. 2002 Sep 6;110(5):625–637. doi: 10.1016/s0092-8674(02)00875-9. [DOI] [PubMed] [Google Scholar]
  52. Urban S., Lee J. R., Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell. 2001 Oct 19;107(2):173–182. doi: 10.1016/s0092-8674(01)00525-6. [DOI] [PubMed] [Google Scholar]
  53. Wolff T., Ready D. F. Cell death in normal and rough eye mutants of Drosophila. Development. 1991 Nov;113(3):825–839. doi: 10.1242/dev.113.3.825. [DOI] [PubMed] [Google Scholar]
  54. Xu T., Rubin G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993 Apr;117(4):1223–1237. doi: 10.1242/dev.117.4.1223. [DOI] [PubMed] [Google Scholar]
  55. Zhou Mina I., Wang Hongmei, Ross Jonathan J., Kuzmin Igor, Xu Chengen, Cohen Herbert T. The von Hippel-Lindau tumor suppressor stabilizes novel plant homeodomain protein Jade-1. J Biol Chem. 2002 Aug 6;277(42):39887–39898. doi: 10.1074/jbc.M205040200. [DOI] [PubMed] [Google Scholar]
  56. de Nooij J. C., Hariharan I. K. Uncoupling cell fate determination from patterned cell division in the Drosophila eye. Science. 1995 Nov 10;270(5238):983–985. doi: 10.1126/science.270.5238.983. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES